Rheology pp 91-98 | Cite as

Time-Dependent Rheological Behavior of Polymeric Systems

  • A. I. Isayev
  • C. A. Hieber
  • R. K. Upadhyay
  • S. F. Shen


The capability to describe time-dependent rheological material behavior is a necessary element of any new proposed viscoelastic equation. Recently, Leonov1,2 published a rheological equation, based upon irreversible thermodynamics, which describes the behavior of elastic polymeric fluids over a wide range of elastic strain. This model has subsequently been used for predicting flow orientation in injection molding3, where it was shown that the time-dependent rheological behavior is important for predicting frozen-in birefringence in molded parts. In the present paper, by using the Leonov equation together with numerical methods, the following two time-dependent problems are considered: (1) transient simple shear flow with impulsive change from zero shear rate to non-zero constant shear rate with subsequent relaxation following cessation of flow; (2) oscillatory shear flow in the linear and non-linear regimes.


Shear Rate Shear Flow Nonlinear Regime Extinction Angle Oscillatory Shear Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. I. Leonov, Nonequilibrium thermodynamics and rheology of viscoelastic polymer media, Rheol. Acta, 15: 85 (1976).MATHCrossRefGoogle Scholar
  2. 2.
    A. I. Leonov, E. H. Lipkina, E. D. Paskhin and A. N. Prokunin, Theoretical and experimental investigation of shearing in elastic polymer liquids, Rheol. Acta, 15: 411 (1976).MATHCrossRefGoogle Scholar
  3. 3.
    A. I. Isayev and C. A. Hieber, Toward a viscoelastic modelling of the injection molding of polymers, to appear in Rheol. Acta.Google Scholar
  4. 4.
    F. N. Gortemaker, M. G. Hansen, B. de Cindio, H. M. Laun and H. Janeschitz-Kriegl, Flow birefringence of polymer melts: application to the investigation of time-dependent Theological properties, Rheol. Acta, 15: 256 (1976).CrossRefGoogle Scholar
  5. 5.
    K. Osaki, N. Bessho, T. Kojimoto and M. Kurata, Flow birefringence of polymer solutions in time-dependent field, J. Rheol., 23: 457 (1979).ADSCrossRefGoogle Scholar
  6. 6.
    H. Kajuira, H. Endo and M. Nagasawa, Sinusoidal normal stress measurements with the Weissenberg rheogoniometer, J. Polym. Sci., Phys. Ed., 11:2371 (1973).Google Scholar
  7. 7.
    G. V. Vinogradov, A. I. Isayev, D. A. Mustafayev and Y. Y. Podolsky, Polarization-optical investigation of polymers in fluid and high-elastic states under oscillatory deformation, J. Appl. Polym. Sci., 22: 665 (1978).CrossRefGoogle Scholar
  8. 8.
    H. Endo and M. Nagasawa, Normal stress and shear stress in a viscoelastic liquid under oscillatory shear flow, J. Polym. Sci., A-2, 8: 371 (1970).CrossRefGoogle Scholar
  9. 9.
    L. A. Faitelson and A. I. Alekseenko, Normal stresses during periodic shear deformation, Polym. Mech., 9: 275 (1973).CrossRefGoogle Scholar
  10. 10.
    W. Philippoff, Vibrational measurements with large amplitudes, Trans. Soc. Rheol., 10: 1: 317 (1966).CrossRefGoogle Scholar
  11. 11.
    W. Philippoff and R. A. Stratton, Correlation of the Weissen-berg rheogoniometer with other methods, Trans. Soc. Rheol., 10: 2: 467 (1966).CrossRefGoogle Scholar
  12. 12.
    G. V. Vinogradov, A. I. Isayev and E. V. Katsyutsevich, Critical regimes of oscillatory deformation of polymeric systems above glass transition and melting temperature, J. Appl. Polym. Sci., 22: 727 (1978).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • A. I. Isayev
    • 1
  • C. A. Hieber
    • 1
  • R. K. Upadhyay
    • 1
  • S. F. Shen
    • 1
  1. 1.Sibley School of Mechanical and Aerospace EngineeringCornell UniversityIthacaUSA

Personalised recommendations