Advertisement

Rheology pp 683-688 | Cite as

Prediction of the Behavior of Concrete by Means of a Rheological Law

  • J. C. Robinet
  • H. Di Benedetto

Abstract

The description of concrete behavior with an incremental rheological law is relatively recent ; in fact the first attempt of modelisation, using the hypo-elastic laws, dates back to ten years ago. These models have been completed, taking into consideration the viscous part which is necessary to the description of the creep and relaxation phenoma. These very simple models define the laws not taking into account the direction of the incremental stress vector. The experimental verifications, showing the “directional dependence” of the response, have lead the authors to propose a new model for the description of concrete behavior. This paper proposes a non-linear incremental law with an infinity of domains of expression(or a continuous domain)and to which a validity domain is associated. This new model has also been carried out in order to narrow down the observed divergence between reality and calculation with hypoelastic laws describing the cyclic phenomena. In fact, the irreversibilities of the material are amplified through the successive modifications of the stress path.

Keywords

Triaxial Test Stress Path Concrete Behavior Elementary Path Validity Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. 1.
    Mandel Cours de Mécanique des Milieux Continus - Tome 1 Gauthier-Villars - Paris (1966)Google Scholar
  2. 2.
    C. Truesdell Introduction à la Mécanique rationnelle des milieux continus - Masson - Paris (1974)Google Scholar
  3. 3.
    C. Truesdell The non-linear field theories - vol. III.3 - and W. Noll Handbook of physics - Springer - (1965)Google Scholar
  4. 4.
    J.C. Robinet Présentation d’une loi rhéologique non linéaire H. Di Benedetto en écriture incrémentale pour les sols, et comparaison avec les différents modèles existants Cahier du Groupe Français de Rhéologie (1980)Google Scholar
  5. 5.
    Boehler Contribution à l’étude de l’équilibre limite des sols anisotropes - Thèse de doctorat de spécialité - Grenoble (1968)Google Scholar
  6. 6.
    J.C. Robinet H. Di Benedetto Loi rhéologique en écriture incréComtet - P. Mathieu mentale pour les sols–Journée Rhéologie - E.N.T.P.E. (1979)Google Scholar
  7. 7.
    S.W. Rudnicki Conditions for the localization of deformation J.R. Rice in pressure sensitive dilatant materials - J. Mech. Phys. Solids, 23 - (1975)Google Scholar
  8. 8.
    R. Hill Bifurcation phenomena in the plae tension test J.W. Hutchinson J. Mech. Phys. Solids, 23 - (1975)Google Scholar
  9. 9.
    J. Mandel Conditions de stabilité et postulat de Drucker In rheology and soil Mechanics symp. - Grenoble (1964)Google Scholar
  10. 10.
    I. Vardoulakis Bifurcation and localization modes of the triaxial test on dry sand samples - Journée de Rhéologie - Vaulx-en-Velin (1979)Google Scholar
  11. 11.
    M.D. Kotsovos Behavior of concrete under multiaxial stress ACI S.B. Newman Journal Proceedings - vol. 74 - (1977)Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • J. C. Robinet
    • 1
  • H. Di Benedetto
    • 1
  1. 1.Ecole Nationale des Travaux Publics de l’EtatVaulx-en-VelinFrance

Personalised recommendations