Rheology pp 521-526 | Cite as

Rheology and Morphology of Dispersed Two-Phase Polymer Blends in Capillary Flow

  • Narasaiah Alle
  • J. Lyngaae-Jørgensen


In recent years there has been a great deal of interest in the studies of the structure and properties of polymer mixtures. However, there is little information in the literature concerning the morphologyrheology relationship and the principles which govern the morphology developments for the dispersed two-phase polymer blends in the molten state under continuous shear flow1-5. In previous papers6-7 a blending law based on model morphologies proposed earlier by Vinogradow8,9 was derived in order to evaluate the morphology of dispersed two-phase polymer blends during capillary flow. The purpose of the present study is to elucidate the morphology in the molten state of polymer mixtures under shear flow conditions.


Shear Rate Molecular Weight Distribution Master Curve Molten State Capillary Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Van Oene, J.Colloid Interfac.Sci. 40, 448 (1972)CrossRefGoogle Scholar
  2. 2.
    J.M. Starita, Trans.Soc.Rheol. 16, 339 (1972)CrossRefGoogle Scholar
  3. 3.
    C.D. Han and Y.W. Kim, Trans.Soc.Rheol. 19, 245 (1975)CrossRefGoogle Scholar
  4. 4.
    S. Danesi and R.S. Porter, Polymer 19, 448 (1978)CrossRefGoogle Scholar
  5. 5.
    C.J. Nelson, G.N. Argeropoulos, F.C. Weissert and G.G.A. Böhm, Angew.Makromol.Chem. 60/61, 49 (1977)CrossRefGoogle Scholar
  6. 6.
    N. Alle and J. Lyngaae-Jørgensen, Rheol.Acta (in press)Google Scholar
  7. 7.
    N. Alle and J. Lyngaae-Jorgensen, Rheol.Acta (in press)Google Scholar
  8. 8.
    M. Yakob, M.V. Tsebrenko, A.V. Yudin, and G.V. Vinogradow, Int.J.Polym.Metals 3, 99 (1974)CrossRefGoogle Scholar
  9. 9.
    A.P. Plochocki, Pololefin Blends, in “Polymer Blends”, vol. 2, D.R. Paul and S. Newman, ed., Academic Press, New York (1978)Google Scholar
  10. 10.
    N. Alle, Ph.D. Thesis, The Technical University of Denmark Copenhagen (1980)Google Scholar
  11. 11.
    B. Rabinowitsch, Z.Phys.Chem.A 145, 1 (1929)Google Scholar
  12. 12.
    B.L. Lee and J.L. White, Trans.Soc.Rheol. 18, 467 (1974)CrossRefGoogle Scholar
  13. 13.
    G.V. Vinogradow and A.Y. Malkin, J.Polym.Sci. A 2, 2, 2357 (1966)Google Scholar
  14. 14.
    G.V. Vinogradow and A.Y. Malkin, J.Polym.Sci. A 2, 4, 135 (1966)Google Scholar
  15. 15.
    R.C. Penwell, W.W. Graessley and A. Kovacs, J.Polym.Sci., Polym.Phys.Ed. 12, 1771 (1974)ADSCrossRefGoogle Scholar
  16. 16.
    F. Bueche, J.Chem.Phys. 22, 603 (1954)ADSCrossRefGoogle Scholar
  17. 17.
    W.W. Graessley, J.Chem.Phys. 43, 2696 (1965)ADSCrossRefGoogle Scholar
  18. 18.
    S. Middleman, “The Flow of High Polymers”, Interscience, New York (1968)Google Scholar
  19. 19.
    J. Lyngaae-Jørgensen, Dr.techn.Thesis, The Technical University of Denmark, Copenhagen (1980)Google Scholar

Copyright information

© Springer Science+Business Media New York 1980

Authors and Affiliations

  • Narasaiah Alle
    • 1
  • J. Lyngaae-Jørgensen
    • 1
  1. 1.Instituttet for Kemiindustri, Building 227The Technical University of DenmarkLyngbyDenmark

Personalised recommendations