Rheology pp 493-498 | Cite as

The Creep Behavior of a High Molecular Weight Polystyrene

  • D. J. Plazek
  • N. Raghupathi
  • V. M. O’Rourke


In 1932 Warren Busse noted that high molecular weight linear polymers at temperatures above their glass tempearature, Tg, responded for a time as if they were crosslinked: i.e. they exhibited1 a rubberlike molulus before viscous flow dominated the deformation. He proposed that entanglements involving neighboring threadlike molecules behaved as temporary crosslinks. The appearance of what is now referred to as the rubbery plateau in the creep compliance, J(t), and the stress relaxation modulus, G(t), curves plotted as a function of logarithmic time is the result of the diminution of viscous deformation by the entanglements. The enhanced molecular weight dependence of the viscosity at high molecular weights, M3.4 over the first power dependence observed at low molecular weights at constant monomeric friction coefficient2,3 is a related phenomenon attributed to the existence and influence of the molecular entanglements. The decrease of the entanglement concentration at high rates of shear is believed to be the principal mechanism responsible for the strong decrease in the shear viscosity with increasing shear rates. Graessley has developed a theory of non-Newtonian flow based on this concept4,5.


Creep Compliance Entanglement Concentration Compliance Curve Viscous Deformation Rubbery Plateau 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W.F. Busse, J. Phys. Chem., 36, 2862 (1932).CrossRefGoogle Scholar
  2. 2.
    T. G Fox and V.R. Allen, J. Chem. Phys., 41, 337 (1964).ADSCrossRefGoogle Scholar
  3. 3.
    G.C. Berry and T. G Fox, Adv. Polymer Sci., 5 261 (1968).CrossRefGoogle Scholar
  4. 4.
    W.W. Graessley, J. Chem. Phys., 43, 2696 (1965).ADSCrossRefGoogle Scholar
  5. 5.
    W.W. Graessley, J. Chem. Phys., 47, 1942 (1967).ADSCrossRefGoogle Scholar
  6. 6.
    R.A. Stratton and A.F. Butcher, J. Polymer Sci. Phys., 11, 1747 (1973).Google Scholar
  7. 7.
    R.L. Carpenter, O. Kramer and J.D. Ferry, Macromolecules, 10, 117 (1977).ADSCrossRefGoogle Scholar
  8. 8.
    O. Kramer and J.D. Ferry, J. Polymer Sci. Phys. Ed., 15, 761 (1977).ADSCrossRefGoogle Scholar
  9. 9.
    J.D. Ferry, Polymer, 20, 1343 (1979)CrossRefGoogle Scholar
  10. R.L. Carpenter, H.C. Kan and J.D. Ferry, Polym. Eng. Sci., 19, 267 (1979)CrossRefGoogle Scholar
  11. H.C. Kan and J.D. Ferry, Macromolecules, 11, 1049 (1978); 12, 494 (1979).ADSCrossRefGoogle Scholar
  12. 10.
    D.J. Plazek, E. Riande, H. Markovitz and N. Raghupathi, J. Polymer Sci., Phys., 17, 2189 (1979).CrossRefGoogle Scholar
  13. 11.
    E. Slagowski, L.J. Fetters and D. McIntyre, Polymer Prepr., Amer. Chem. Soc., Div. Polymer Chem., 12, 753 (1971).Google Scholar
  14. 12.
    D. Mclntyre, L.J. Fetters and E. Slagowski, Science, 176, 1041 (1972).ADSCrossRefGoogle Scholar
  15. 13.
    E.L. Slagowski, L.J. Fetters and D. Mclntyre, Macromolecules, 7, 394 (1974).ADSCrossRefGoogle Scholar
  16. 14.
    E.L. Slagowski, Ph.D. Thesis, University of Akron, 1972.Google Scholar
  17. 15.
    D.J. Plazek, J. Polymer Sci. A-2, 6, 621 (1968).Google Scholar

Copyright information

© Springer Science+Business Media New York 1980

Authors and Affiliations

  • D. J. Plazek
    • 1
  • N. Raghupathi
    • 1
  • V. M. O’Rourke
    • 1
  1. 1.Metallurgical and Materials EngineeringUniversity of PittsburghPittsburghUSA

Personalised recommendations