Advertisement

Rheology pp 333-338 | Cite as

A Rheological Investigation of a Semi-Stiff Chain Aromatic Polyamidehydrazide in Dilute Solution: Ultra-High Modulus Fibers and Liquid Crystalline Polymer Solutions

  • L. L. Chapoy
  • N. F. la Cour

Abstract

The production of ultra-high modulus polymeric fibers (1), having a tensile strength comparable to that of steel wire, is based on the ability to achieve a very high degree of long range molecular order (2) during the spinning process. The realization of such high degrees of orientation can be facilitated by solution spinning polymers which are capable of forming a lyotropic, nematic mesophase, i.e. a liquid crystalline solution. The spinning and stretching processes orient the liquid crystal such that the chains are uniaxially oriented with respect to the fiber axis. The solvent is then rapidly removed so as to freeze in the high degree of orientation.

Keywords

Shear Rate Double Logarithmic Plot Flexible Chain Polymer Rheological Investigation Nematic Mesophase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    A. Ciferri, Int.J.Polym Mater., 6: 137 (1978).CrossRefGoogle Scholar
  2. (2).
    L.L. Chapoy, D. Spaseska, K. Rasmussen and D.B. DuPre, Macromolecules, 12: 680 (1979).ADSCrossRefGoogle Scholar
  3. (3).
    G. Marrucci and A. Ciferri, J. Polym.Sci., Polymer Lett. Ed., 15: 643 (1977).ADSCrossRefGoogle Scholar
  4. (4).
    B. Valenti and A. Ciferri, J.Polym.Sci., Polymer Lett.Ed., 16: 657 (1978).ADSCrossRefGoogle Scholar
  5. (5).
    G. Kiss and R.S. Porter, J. of Polym.Sci., Polymer Symp. 65, 193 (1978).CrossRefGoogle Scholar
  6. (6).
    R.W. Duke and L.L. Chapoy, Rheologica Acta, 15: 548 (1976).CrossRefGoogle Scholar
  7. (7).
    D.G. Baird, A. Ciferri, W.R. Krigbaum and F. Solaris, J.Polym.Sci., Polymer Phys.Ed., 17: 1649 (1979).ADSCrossRefGoogle Scholar
  8. (8).
    T.G. Fox and V.R. Allen, J.Chem.Phys. 41: 344 (1964).ADSCrossRefGoogle Scholar
  9. (9).
    J.J. Birke, J. Macromolecular Sci. — Chemistry, A7:187 (1973).CrossRefGoogle Scholar
  10. (10).
    D.G. Baird and R.L. Ballman, J. of Rheology, 23: 505 (1979).ADSCrossRefGoogle Scholar
  11. (11).
    P.G. de Gennes, The Physics of Liquid Crystals, Oxford University Press, London, 1974.Google Scholar
  12. (12).
    E.B. Priestly, P.J. Wojtowicz and P. Sheng, Introduction to Liquid Crystals, Plenum Press, New York, 1974.Google Scholar
  13. (13).
    V.N. Tsvetkov, Chapter XIV in Polymer Reviews, Volume 6: Newer Methods of Polymer Characterization, Interscience Publishers, New York, 1964.Google Scholar
  14. (14).
    J.D. Huppler, E. Ashare, and L.A. Holmes, Trans. Soc. of Rheol., 11: 159 (1967).ADSCrossRefGoogle Scholar
  15. (15).
    D.G. Baird, Chapter 7 in Liquid Crystalline Order in Polymers, A. Blumstein, Ed., Academic Press 1978.Google Scholar
  16. (16).
    E.W. Fischer, G.R. Strobl, M. Dettenmaier, M. Stamm, and N. Steidl, Discussions of the Faraday Society, NO. 68, 1979, Contribution 68/1.Google Scholar

Copyright information

© Springer Science+Business Media New York 1980

Authors and Affiliations

  • L. L. Chapoy
    • 1
  • N. F. la Cour
    • 1
  1. 1.Instituttet for KemiindustriThe Technical University of DenmarkLyngbyDenmark

Personalised recommendations