Rheology pp 303-308 | Cite as

Shear Rate Dependence of the Association of High Molecular Weight Macromolecules in Dilute Solution

  • Marie-Noëlle Layec-Raphalen
  • Claude Wolff


Dilute solutions of flexible, high molecular weight macromolecules in nearly θ solvents have been demonstrated to have an increase of their relative viscosity above a critical shear rate, depending on the concentration1,2. In the same time, a non linear dependence of the reduced viscosity nsp/c is observed. Such a variation may be explained by an association process3,4,5,6. In this paper, we intend to apply the procedure described in our recent work5, at different shear rates to the following materials which have shown shear thickening2: Polystyrenes in decalin and polyethyleneoxide WSR301 in water. Calculations have been carried out in dimerization and multimerization cases. But only the dimerization appears to be compatible with the experimental results. The molecular weights of the polystyrene samples are listed in table II. We have made the assumption that the Huggins constant kH is nearly independent on the degree of association.


Shear Rate Association Constant High Shear Rate Relative Viscosity Wall Shear Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    O. Quadrat, M. Bohdanecky, and P. Munk, Influence of Thermodynamic quality of a solvent upon Non-Newtonian viscosity of Poly(methylmethacrylate) solutions, J. Polym. Sci., Part C, 16:95 (1967)Google Scholar
  2. 2.
    M. N. Layec-Raphalen, and C. Wolff, On the shear thickening behaviour of dilute solutions of chain macromolecules, J. N. N. F1. Mech., 1:159 (1976)CrossRefGoogle Scholar
  3. 3.
    L. H. Frisch, and R. Simha, in Rheology, F. Eirich Editor, Acad. Press, N.Y, vol. I, p. 525 (1956)Google Scholar
  4. 4.
    H. G. Elias, Association of synthetic polymers, Intern. J. Polym. Mater., 4, 3-4:209 (1976)CrossRefGoogle Scholar
  5. 5.
    C. Wolff, A. Silberberg, Z. Priel, and M. N. Layec-Raphalen Influence of the association of macromolecules in dilute solution on their reduced viscosity, Polymer, 20:281 (1979)CrossRefGoogle Scholar
  6. 6.
    M. Bohdanecky, B. Lanska, J. Sebenda, and Z. Tuzar, Dilute solutions of Nylon 12-III Intermolecular and Intramolecular association of end-groups, to be published in Europ. Polym. J.Google Scholar
  7. 7.
    E. B. Bagley, End corrections in the capillary flow of Polyethylene, J. Appl. Phys., 28, 5:624 (1957)MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    A. Dandridge, G. H. Meeten, M. N. Layec-Raphalen, and C. Wolff, Flow birefringence of dilute solutions of Polyethylene oxide of high molecular weight at high shear rate, Rheol. Acta, 18:275 (1979)CrossRefGoogle Scholar
  9. 9.
    M. C. Kohn, Energy storage in drag reducing Polymer solutions, J. of Polym. Sci., 11:2339 (1973)Google Scholar
  10. 10.
    C. Wolff, Sur une représentation asymptotique linéaire des mesures de viscosité intrinsèque non-newtonienne, J. chim. Phys-, 1174 (1962)Google Scholar
  11. 11.
    C. Wolff, Comparaison des courbes de viscosité intrinsèque non-newtonienne obtenues avec différents types de polymères, J. Phys. (Suppl. n° 10), 32:C5a–263 (1971)Google Scholar
  12. 12.
    Y. Layec and C. Wolff, Sur la viscosité non-newtonienne des solutions d’ellipsoïdes rigides, Rheol. Acta, 13: 696 (1974)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1980

Authors and Affiliations

  • Marie-Noëlle Layec-Raphalen
    • 1
  • Claude Wolff
    • 2
  1. 1.Laboratoire d’Hydrodynamique MoléculaireBrest CédexFrance
  2. 2.Laboratoire de Mécanique et RhéologieE.N.S.I.T.Mulhouse CédexFrance

Personalised recommendations