Rheology pp 9-16 | Cite as

Shear-Thinning Effects in Creeping Flow about a Sphere

  • R. P. Chhabra
  • C. Tiu
  • P. H. T. Uhlherr


Shear-thinning inelastic fluid behaviour is often described by the power law because of the simplicity of this model. Frequently also zero shear viscosity is difficult to measure and so a more realistic fluid model cannot be used. Despite the severe limitations of the power law in describing regions of a flow field where the shear rate approaches zero, it continues to be applied to the problem of creeping sphere motion. It has not yet been determined over what proportion of the sphere surface this fluid model breaks down. Presumably if the areas of the sphere surface about the front and rear stagnation points and the volume of fluid far from the sphere do not contribute significantly to the total drag of a sphere, then a power law description of the flow field may yield an acceptable result for the drag.


Shear Rate Stream Function Theoretical Solution Total Drag Aqueous Polymer Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Acharya, R. A. Mashelkar and J. J. Ulbrecht, Rheo. Acta, 15: 454 (1976).CrossRefGoogle Scholar
  2. 2.
    Y. Tomita, Bull. J. S.M.E., 2: 469 (1959).MathSciNetCrossRefGoogle Scholar
  3. 3.
    G. C. Wallick, J. G. Savins and D. R. Arterburn, Phys. Fluids, 5: 367 (1962).ADSCrossRefGoogle Scholar
  4. 4.
    J. C. Slattery, A.I.Ch.E.J., 8: 663 (1962).CrossRefGoogle Scholar
  5. 5.
    M. L. Wasserman and J. C. Slattery, A.I.Ch.E.J., 10: 383 (1964).CrossRefGoogle Scholar
  6. 6.
    Y. Nakano and C. Tien, A.I.Ch.E.J., 14: 145 (1968).CrossRefGoogle Scholar
  7. 7.
    V. Mohan, “Fall of liquid drops in non-Newtonian media”, Ph.D. Dissertation, I.I.T. Madras (1974).Google Scholar
  8. 8.
    A. J. Ziegenhagen, Appl. Sci. Res., 14A:43 (1964).CrossRefGoogle Scholar
  9. 9.
    R. P. Chhabra, P. H. T. Uhlherr and D. V. Boger, J. Non-Newtn. Fluid Mech., 6:187 (1979/80).CrossRefGoogle Scholar
  10. 10.
    R. M. Turian, A.I.Ch.E.J., 13: 999 (1967).CrossRefGoogle Scholar
  11. 11.
    R. P. Chhabra, C. Tiu and P. H. T. Uhlherr, Proc. 6th Aust. Conf. Hydraulics Fluid Mech., Adelaide, 435 (1977).Google Scholar
  12. 12.
    R. P. Chhabra and P. H. T. Uhlherr, Rheo. Acta, in press.Google Scholar
  13. 13.
    R. P. Chhabra and P. H. T. Uhlherr, Rheo. Acta, 18: 593 (1979).CrossRefGoogle Scholar
  14. 14.
    P. H. T. Uhlherr, T. N. Le and C. Tiu, Can. J. Chem. Eng., 54: 497 (1976).Google Scholar
  15. 15.
    N. Yoshioka and K. Adachi, J. Chem. Eng. Japan, 6: 134 (1973).CrossRefGoogle Scholar
  16. 16.
    H. Kato, M. Tachibana and K. Oikawa, Bull. J.S.M.E., 15: 1556 (1972).CrossRefGoogle Scholar
  17. 17.
    D. Sigli and M. Coutanceau, J. Non-Newtn. Fluid Mech., 3:107 (1977/78).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1980

Authors and Affiliations

  • R. P. Chhabra
    • 1
  • C. Tiu
    • 1
  • P. H. T. Uhlherr
    • 1
  1. 1.Department of Chemical EngineeringMonash UniversityClaytonAustralia

Personalised recommendations