Rheology pp 645-650 | Cite as

On Boundary Conditions for Micropolar Fluids

  • J. M. Rubi
  • P. Mills
  • D. Quemada
  • J. Casas-Vázquez


The use of additional degrees of freedom to explain the behaviour of micropolar systems, namely, spin, microinertia, antisymmetric pressure tensor and spin flux, makes the problem of choosing boundary conditions more acute. For micropolar fluids in contact with a wall, diverse intuitive boundary conditions have been proposed by several authors1–3. Some of these boundary conditions are incompatible and others cannot be applied to any micropolar fluid. In our opinion the difficulty lies in the fact that intuitive arguments are not sufficient to understand the behaviour of micropolar fluids near a boundary and therefore it is necessary to make use of another type of approach.


Entropy Production Micropolar Fluid Pressure Tensor Intuitive Argument Phenomenological Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D.W. Condiff and J.S. Dahler, Fluid mechanical aspects of antisymmetric stress, Phys. Fluids, 7: 842 (1964).MathSciNetADSMATHCrossRefGoogle Scholar
  2. 2.
    E.L. Aero, A.J. Bulygin and E.V. Kuvshinskii, Asymmetric hydromechanics, J. Appl. Math. Mech., 29: 333 (1965).MATHCrossRefGoogle Scholar
  3. 3.
    S.C. Cowin and C.J. Pennington, On the steady rotational motion of polar fluids, Rheol. Acta, 9: 307 (1970).MATHCrossRefGoogle Scholar
  4. 4.
    D. Bedeaux, A.M. Albano and P. Mazur, Boundary conditions and non-equilibrium thermodynamics, Physica, 82A: 438 (1975).MathSciNetADSGoogle Scholar
  5. 5.
    J.M. Rubí and J. Casas-Vázquez, Thermodynamical aspects of micropolar fluids. Anon-linear approach, J. Non-Equilib. Thermodyn., (in press).Google Scholar
  6. 6.
    J.M. Rubí and J. Casas-Vázquez, Boundary conditions for systems with spin, (to be published).Google Scholar
  7. 7.
    K.A. Kline and S.J. Allen, A thermodynamical theory of fluid suspensions, Phys. Fluids, 14: 1863 (1971).ADSMATHCrossRefGoogle Scholar
  8. 8.
    A.S. Popel, S.A. Reginer and P.I. Usick, A continuum model of blood flow, Biorheology, 11: 427 (1974).Google Scholar
  9. 9.
    C.K. Kang and A.C. Eringen, The effect of microstructure on the rheological properties of blood, Bull. of Math. Biol., 38: 135 (1976).MATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1980

Authors and Affiliations

  • J. M. Rubi
    • 1
  • P. Mills
    • 2
  • D. Quemada
    • 2
  • J. Casas-Vázquez
    • 1
  1. 1.Depto. TermologíaUniversidad Autónoma de BarcelonaBellaterra, BarcelonaSpain
  2. 2.L.B.H.P.-Université Paris VIIParisFrance

Personalised recommendations