Rheology pp 541-547 | Cite as

Irreversible Network Disentanglement and Time-Dependent Flows of Polymer Melts

  • Manfred H. Wagner


For small strains Lodge’s rubberlike-liquid theory is a valid description of rheological behaviour of polymer melts, but at higher strains the theory fails: The phenomenon of shear thinning is not explained which is characteristic for shear flow of nearly all polymer liquids, and in elongation deviation of experimental data from predictions of Lodge’s theory reflect also a flow thinning, and not a strain hardening in spite of the pronounced S-shape of the stress-strain diagrams. Comparing measured stress growth and stress relaxation data with predictions of the theory, it can be concluded that the temporary network structure of the polymer melt is destroyed increasingly with the magnitude of deformation. Hence, the number of entanglements decreases with increasing strain. Finally the irreversibility of the disentanglement process is considered.


Constitutive Equation Stretch Ratio Polymer Liquid Strain Dependence Hencky Strain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lodge, A.S., Trans. Faraday Soc. 52, 120 (1956).CrossRefGoogle Scholar
  2. 2.
    Lodge, A.S., “Elastic Liquids”, London-New York 1964.Google Scholar
  3. 3.
    Lodge, A.S., Rheol. Acta 7, 379 (1968).MATHCrossRefGoogle Scholar
  4. 4.
    Chang, H., and A.S. Lodge, Rheol. Acta 11, 127 (1972).CrossRefGoogle Scholar
  5. 5.
    Wagner, M.H., Rheol. Acta 15, 133 (1976).CrossRefGoogle Scholar
  6. 6.
    Lodge, A.S., “Body Tensor Fields in Continuum Mechanics”, London-New York 1974.Google Scholar
  7. 7.
    Wagner, M.H., Rheol. Acta 15, 136 (1976).CrossRefGoogle Scholar
  8. 8.
    Gortemaker, F.H., H. Janeschitz-Kriegl, and K.te Nijenhuis, Rheol. Acta 15, 487 (1976).CrossRefGoogle Scholar
  9. 9.
    Laun, H.M., M.H. Wagner, and H. Janeschitz-Kriegl, Rheol. Acta 18, 615 (1979).CrossRefGoogle Scholar
  10. 10.
    Laun, H.M., Rheol. Acta 17, 1 (1978).CrossRefGoogle Scholar
  11. 11.
    Wagner, M.H., and H.M. Laun, Rheol. Acta 17, 138 (1978).CrossRefGoogle Scholar
  12. 12.
    Wagner, M.H., J. Non-Newtonian Fluid Mech. 4, 39 (1978).CrossRefGoogle Scholar
  13. 13.
    Wagner, M.H., paper presented at the IUTAM Symposium on Non-Newtonian Fluid Mechanics, Louvin-La-Neuve, 1978.Google Scholar
  14. 14.
    Wagner, M.H., and S.E. Stephenson, J. Rheol. 23, 489 (1979)ADSCrossRefGoogle Scholar
  15. 15.
    Wagner, M.H., and S.E. Stephenson, Rheol. Acta 18, 463 (1979).CrossRefGoogle Scholar
  16. 16.
    Doi, M., and S.F. Edwards, J. Chem. Soc., Faraday Trans. II, 74 1789–1832 (1978), 75, 38 (1979).CrossRefGoogle Scholar
  17. 17.
    De Germes, P.G., J.Chem. Phys. 55, 572 (1971).ADSCrossRefGoogle Scholar
  18. 18.
    Osaki, K., S. Ohta, M. Fukuda, and M. Kurata, J. Polym. Sci. 14, 1701 (1976).Google Scholar
  19. 19.
    Meissner, J., Rheol. Acta 10, 230 (1971).CrossRefGoogle Scholar
  20. 20.
    Meissner, J., J. Appl. Polym. Sci. 16, 2877 (1972).CrossRefGoogle Scholar
  21. 21.
    Meissner, J., Rheol. Acta 14, 201 (1975).CrossRefGoogle Scholar
  22. 22.
    Wagner, M.H., Rheol. Acta 18, 33 (1979).CrossRefGoogle Scholar
  23. 23.
    Wagner, M.H., Rheol. Acta 18, 681 (1979).MATHCrossRefGoogle Scholar
  24. 24.
    Fukuda, M., K. Osaki, and M. Kurata, J. Polym. Sci. 13 A, 1563 (1975).Google Scholar
  25. 25.
    Chang, W.V., R. Bloch, and N.W. Tschoegl, J. Polym. Sci. 15, 923 (1977).Google Scholar
  26. 26.
    Bloch, R., W.V. Chang, and N.W. Tschoegl, J. Rheol. 22, 1 (1978).ADSMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1980

Authors and Affiliations

  • Manfred H. Wagner
    • 1
  1. 1.Schlossbergweg 116KühlenthalW-Germany

Personalised recommendations