Rheology pp 335-344 | Cite as

Macromolecules in Nonhomogeneous Velocity Gradient Fields: Rheological and Diffusion Phenomena

  • James H. Aubert
  • Stephen Prager
  • Matthew Tirrell


Kinematically nonhomogeneous* flows are common in rheological measurement situations and in flows of technological import for polymers. Rheological anomalies1,2 and migration phenomena3–5 have been observed and/or speculated upon in these flows. Apparent “slip” at liquid-solid interfaces (for example, viscosity decreasing with channel size in small capillaries) has been reported in some such flows of macromolecular liquids. Much discussion has centered on the molecular origins of the observations leading to these reports.6,7 At least three identifiable alternatives are possible. 1. When large molecules are present in the liquid, they sample a larger portion of the flow. Thus, they “detect” in some sense the nonuniform velocity gradient field and this in turn affects the contribution they make to the fluid stress. 2. Macro-molecules migrate away from the walls leaving a concentration-depleted layer which produces lower fluid viscosity in those regions and apparent “slip”.


Homogeneous Flow Undisturbed Flow Plane Poiseuille Flow Rouse Model Lower Fluid Viscosity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Astarita, G. Marrucci, and G. Palumbo, I.E.C. Fundamentals 3:333 (1964).CrossRefGoogle Scholar
  2. 2.
    W. Kozicki, S. N. Pasari, A. R. K. Rao, and C. Tiu, Chem. Eng. Sci. 25:4 (1970).Google Scholar
  3. 3.
    H. P. Schreiber, S. H. Storey, and E. B. Bagley, Trans. Soc. Rheol. 10:275 (1966).CrossRefGoogle Scholar
  4. 4.
    R. H. Schaefer, N. Laiken, and B.H. Zimm, Biophys. Chem. 2:180 (1974).CrossRefGoogle Scholar
  5. 5.
    M. Tirrell and M. F. Malone, J. Polymer Sci., Polymer Physics Ed 15:1569 (1977).CrossRefGoogle Scholar
  6. 6.
    A. B. Metzner, Y. Cohen, and C. Rangel-Nafaile, J. NonNewtonian Fluid Mech. 5:449 (1979).CrossRefGoogle Scholar
  7. 7.
    J. H. Aubert and M. Tirrell, J Chem. Phys. 72:(4) (1980).Google Scholar
  8. 8.
    J. Happel and H. Brenner, “Low Reynolds Number Hydrodynamics,” Prentice-Hall, Englewood Cliffs, NJ (1965).Google Scholar
  9. 9.
    L. G. Leal, J. NonNewtonian Fluid Mech. 5:33 (1979).CrossRefGoogle Scholar
  10. 10.
    P. Brunn, Rheol. Acta 15:23 (1976).CrossRefGoogle Scholar
  11. 11.
    R. B. Bird, O. Hassager, R. C. Armstrong, and C. F. Curtiss, “Dynamics of Polymeric Liquids: Vol. II Kinetic Theory,” Wiley, NY (1977).Google Scholar
  12. 12.
    S. Lifson, J. Polymer Sci. 20:1 (1956).Google Scholar
  13. 13.
    H. Brenner, Chem. Eng. Sci. 21:97 (1966).CrossRefGoogle Scholar
  14. 14.
    H. Faxen, Arkiv. Mat. Astron. Fysik 20: (8) (1927).Google Scholar
  15. 15.
    H. Brenner, Prog. Heat Mass Trans. 6:509 (1972).Google Scholar
  16. 16.
    K. A. Dill and B. H. Zimm, Nucleic Acids Research 7:735 (1979).CrossRefGoogle Scholar
  17. 17.
    J. H. Aubert and M. Tirrell, Rheol. Acta submitted (1980).Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • James H. Aubert
    • 1
  • Stephen Prager
    • 2
  • Matthew Tirrell
    • 1
  1. 1.Departments of Chemical Engineering and Materials ScienceUniversity of MinnesotaMinneapolisUSA
  2. 2.Department of ChemistryUniversity of MinnesotaMinneapolisUSA

Personalised recommendations