Rheology pp 29-44 | Cite as


  • A. Silberberg


“Biorheology” is the study of the flow and deformation of materials of biological origin and the behavior in flow and deformation of these materials in their biological context. The aims of biorheology are thus, seemingly, not very different from the aims of rheological investigation in general. This is true, however, only superficially. What distinguishes the field is the special relationship which exists between motion and life. It is a sine qua non that a living system moves or deforms, i.e. alters its structure or disposition within a time span which falls well within our own time scale of observation. The biorheologist thus wants to understand why a biological system responds to its driving forces in just the particular way it does. He wants to interpret the essence of the life response. This on the one hand, but on the other there are biological systems, viruses and enzymes, which can be crystallized, seeds or pollens, which can be stored for centuries and then resume biological activity. These materials are not alive, but only potentially so. Yet they are of interest rheologically, not because of their origin, but because their structure and functional character have implication for the living system, of which they may form a part.


Wall Shear Stress Living System Reinforce Concrete Beam Rheological Characterization High Wall Shear Stress 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. L. M. Poiseuille, Compt.rend.Acad.Sci. Paris 1, 554 (1835);Google Scholar
  2. 1a.
    J. L. M. Poiseuille, Compt.rend.Acad.Sci. Paris 11, 961, 1041 (1840);Google Scholar
  3. 1b.
    J. L. M. Poiseuille, Compt.rend.Acad.Sci. Paris 12: 112 (1841);Google Scholar
  4. 1c.
    J. L. M. Poiseuille, Compt.rend.Acad.Sci. Paris 15, 1167 (1842);Google Scholar
  5. 1d.
    J. L. M. Poiseuille, Compt.rend.Acad.Sci. Paris 16, 60 (1843);Google Scholar
  6. 1e.
    J. L. M. Poiseuille, Compt.rend.Acad.Sci. Paris 24: 1074 (1847).Google Scholar
  7. 2.
    E. C. Bingham in: J. L. M. Poiseuille “Experimental Investigations Upon the Flow of Liquids in Tubes of Very Small Diameter” (Translated by W.N. Herschel). Rheological Memoirs Vol. 1, No. 1. E. C. Bingham, Easton, Pa. (1940).Google Scholar
  8. 3.
    A. Lessner, J. Zahavi, A. Silberberg, E. H. Frei and F. Dreyfus in: “Theoretical and Clinical Hemorheology” H. H. Hartert and A.L. Copley (eds.), Springer, Heidelberg (1971); p. 194–205.CrossRefGoogle Scholar
  9. 4.
    G. B. Thurston, Biophysical J. 12:1205 (1972).CrossRefGoogle Scholar
  10. 5.
    G. B. Thurston, Biorheology, 16:149–162 (1979)Google Scholar
  11. 6.
    S. E. Charm and G. S. Kurland, “Blood Flow and Micro-circulation: Wiley, New York (1974).Google Scholar
  12. 7.
    G. Segré and A. Silberberg, Bibl. Anat. 4:83–93 (1964).Google Scholar
  13. 8.
    H. L. Goldsmith and S. G. Mason, Biorheology 3:33 (1965).Google Scholar
  14. 9.
    A. Silberberg, Biorheology 4:29–30 (1966).Google Scholar
  15. 10.
    A. Katchalsky, O. Kedem, C. Klibansky and A. deVries, in “Flow Properties of Blood and Other Biological Systems”, A. L. Copley and G. Stainsby (eds.), Pergamon, Oxford (1960); p.155.Google Scholar
  16. 11.
    E. A. Evans and R. Skalak, “Mechanics and Thermodynamics of Biomembranes” CRC Press (1979).Google Scholar
  17. 12.
    R. M. Hochmuth and W. L. Hampel III, J. Rheology 23:669–680 (1979).CrossRefGoogle Scholar
  18. 13.
    J. Schlessinger and E.L. Elson in: “Methods of Experimental Physics”, Academic Press, New York (1979).Google Scholar
  19. 14.
    B. W. Zweifach and A. Silberberg in: “International Review of Physiology, Cardiovascular Physiology III Vol. 18, A. C. Guyton and D. B. Young (eds.) University Park Press; Baltimore (1979); p.215–260.Google Scholar
  20. 15.
    C. A. Wiederhielm in: “Biomechanics, Its Foundations and Objectives”, Y. C. Fung, N. Perrone and M. Anliker (eds.) Prentice-Hall, Englewood Cliffs (1972); p. 273–286.Google Scholar
  21. 16.
    F.A. Meyer and A. Silberberg, Microvascular Res. 8:263–273 (1974).CrossRefGoogle Scholar
  22. 17.
    F. A. Meyer, R. A. Gelman and A. Silberberg in: “Hydrogels for Medical and Related Applications”, J. D. Andrade (ed.), ACS Symposium Series 31, Washington, D.C. (1976); p.52–59.CrossRefGoogle Scholar
  23. 18.
    F. A. Meyer, M. Koblentz and A. Silberberg, Biochem. J. 161:285–291 (1977).Google Scholar
  24. 19.
    F. A. Meyer and A. Silberberg, Bibl. anat. 15:213–219 (1977).Google Scholar
  25. 20.
    T. J. Pedley, Ann.Rev. Fluid. Mech. 9:229–274 (1977).CrossRefGoogle Scholar
  26. 21.
    J. Sade, N. Eliezer, A. Silberberg and A. C. Nevo, Am. Rev. Resp. Dis. 102:48–52 (1970).Google Scholar
  27. 22.
    M. King, A. Gilboa, F. A. Meyer and A. Silberberg, Am. Rev. Resp. Dis. 110:740–745 (1974).Google Scholar
  28. 23.
    A. Silberberg, F. A. Meyer, A. Gilboa and R. A. Gelman in: “Mucus in Health and Disease”, M. Elstein and D.V. Parke (eds.), Plenum, New York, (1977); p. 171–179.Google Scholar
  29. 24.
    M. Litt, D. P. Wolf and M.A. Khan in: “Mucus in Health and Disease”, M. Elstein and D. V. Parke (eds.), Plenum, New York, (1977); p.191.Google Scholar
  30. 25.
    M. King, L. A. Engel and P. T. Macklem, J. Appl. Physiol. 46(3):504 (1979).Google Scholar
  31. 26.
    C. K. Shih, M. Litt, M. A. Khan and D. P. Wolf, Am. Rev. Resp. Dis. 115:989–995 (1977).Google Scholar
  32. 27.
    R. A. Gelman and F. A. Meyer, Am. Rev. Resp. Dis. 120(3): 553–557 (1979).Google Scholar
  33. 28.
    F.A. Meyer, Biorheology 13:49–58 (1976).Google Scholar
  34. 29.
    F. A. Meyer, Biochim. Biophys. Acta 493:272–282 (1977).Google Scholar
  35. 30.
    F. A. Meyer and A. Silberberg, Biorheology (in press).Google Scholar
  36. 31.
    S. M. Ross and S. Corrsin, J. Appl. Physiol. 37:333 (1974).Google Scholar
  37. 32.
    J. Blake, J. Biomech. 8:179–190 (1975).CrossRefGoogle Scholar
  38. 33.
    M. King and P. T. Macklem, J. Appl. Physiol. 42:797–802 (1977).Google Scholar
  39. 34.
    A. Gilboa and A. Silberberg in: “Air Pollution and The Lung”, E.F. Aharonson, A. Ben David and M. A. Klingberg (eds.), Wiley, New York, (1976); p.49–63.Google Scholar
  40. 35.
    A. Gilboa and A. Silberberg, Biorheology 13:59–65 (1976).Google Scholar
  41. 36.
    W. I. Lee and P. Verdugo, Biophysical J. 16:115–119 (1976).CrossRefGoogle Scholar
  42. 37.
    J. Israelachvilli in: Faraday Discussion 65, Colloid Stability (1978).Google Scholar
  43. 38.
    J. Klein (private communication).Google Scholar
  44. 39.
    A. Silberberg and G. Tzur, Proceedings of the VIIth Interl. Congress on Rheology, C. Klason and J. Kubat (eds.) Gothenburg (1976); p.129–133.Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • A. Silberberg
    • 1
  1. 1.Weizmann Institute of ScienceRehovotIsrael

Personalised recommendations