Rheology pp 283-300 | Cite as

Thermal Effects in Polymer Flow

  • Kamil Wichterle


Flow of polymers — polymer solutions or melts — cannot usually be described by Newton’s viscosity law. Beside of the viscosity anomaly, the polymers posses other rheological phenomena as visco-elasticity, normal stresses, memory, anisotropy of flow etc. Any rheological phenomenon can affect the flow significantly in a limited class of hydrodynamical situations only. We are not going to investigate every possible polymer behaviour, but only problems encountered in industrial polymer production and in the plastics industry. The requirement of reaching an uniform flow in industrial units as soon as possible, entails the necessity to use such arrangements where the kinematics of flow is very simple, too.


Heat Transfer Nusselt Number Thermal Boundary Layer Local Nusselt Number Isothermal Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. J. Carreau and D. De Kee, Review of some useful rheological equations, Can. J. Chem. Eng. 57:3 (1979)CrossRefGoogle Scholar
  2. 2.
    O. Wein, K. Wichterle, P. Mitschka, and J. Ulbrecht, Pseudosimilarity and generalized transport correlations, Coll. Czech. Chem. Commun. 37:1671 (1972)Google Scholar
  3. 3.
    A. B. Metzner and J. C. Reed, Flow of non-Newtonian fluids-correlation of the laminar, transition, and turbulent-flow region, AICHE J. 1:434 (1955)CrossRefGoogle Scholar
  4. 4.
    K. Wichterle, J. Nebrensky, and O. Wein, Similarity of non-Newtonian flows. V. Flow and heat transfer in an annular duct, Coll.Czech. Chem. Commun. 37:2359 (1972)Google Scholar
  5. 5.
    A. S. Lodge, “Elastic Liquids”, Academic Press, London (1964)Google Scholar
  6. 6.
    D. R. Oliver and R. B. Karim, Laminar flow heat transfer in flattened tubes, Can. J. Chem. Eng. 49:236 (1971)CrossRefGoogle Scholar
  7. 7.
    G. Astarita and L. Nicodemo, Transport phenomena in turbulent flow of rheologically complex fluids, in “Progress in Heat and Mass Transfer. Vol.5” W. R. Schowalter, ed., Pergamon Press, Oxford (1972)Google Scholar
  8. 8.
    K. Wichterle, Einfluß der Dissipation bei der Kapillarviskosimetrie nicht-newtonscher Flüsigkeiten, Rheol. Acta 17:383 (1978)CrossRefGoogle Scholar
  9. 9.
    R. M. Turian and R. B. Bird, Viscous heating in the cone-and-plate viscometer, Chem. Eng. Sci. 18:689 (1963)CrossRefGoogle Scholar
  10. 10.
    J. R. A. Pearson, Heat transfer in flowing polymers, in “Progress in Heat and Mass Transfer. Vol.5” W. R. Schowalter ed., Pergamon Press, Oxford (1972)Google Scholar
  11. 11.
    J. R. A. Pearson, Polymer flows dominated by high heat generation an low heat transfer, Polym. Eng. Sci. 18:222 (1978)CrossRefGoogle Scholar
  12. 12.
    H. H. Winter, Viscous dissipation in shear flows of molten polymers, in “Advances in Heat Transfer. Vol.13”, T. F. Irvine and J. P. Hartnett, eds., Academic Press, New York (1977)Google Scholar
  13. 13.
    B. C. Lyche and R. B. Bird, The Graetz-Nusselt problem for a power law non-Newtonian fluid, Chem. Eng. Sci. 6:35 (1956)CrossRefGoogle Scholar
  14. 14.
    M. Dente, Scambio termico per fluidi non-Newtoniani in moto laminare in condotti circolari, Lincei — Rend. Sc. fis. mat. e nat. 29:52 (1960)Google Scholar
  15. 15.
    B. S. Petukhov, “Teploobmen i soprotivlenye pri laminarnom techenii zhidkosti v trubach”(“Heat transfer and friction in laminar flow of liquids in pipes”) Izd.Energia, Moscow (1967)Google Scholar
  16. 16.
    J. E. Porter, Heat transfer at low Reynolds number, Trans. Inst. Chem. Engrs.(London) 49:1 (1971)Google Scholar
  17. 17.
    P. C. Sukanek and R. L. Laurence, An experimental investigation of vicous heating in some simple shear flows, AICHE J. 20:474 (1974)CrossRefGoogle Scholar
  18. 18.
    W. M. Kays, Numerical solutions for laminar flow heat transfer in circular tubes, Trans ASME 77:1265 (1955)Google Scholar
  19. 19.
    E. B. Christiansen, G. E. Jensen, and F. S. Tao, Laminar flow heat transfer, AICHE J. 12:1196 (1966)CrossRefGoogle Scholar
  20. 20.
    E. N. Sieder and G. E. Tate, Heat transfer and pressure drop of liquids in tubes, Ind. Eng. Chem. 28:1429 (1936)Google Scholar
  21. 21.
    J. Lévêque, Les lois de la transmission de la chaleur par convection, Ann. Mines 13:381 (1928)Google Scholar
  22. 22.
    R. L. Pigford, Nonisothermal flow and heat transfer inside vertical tubes, Chem. Eng. Progr. Symposium Ser. (17)51:79 (1955)Google Scholar
  23. 23.
    K. Wichterle and O. Wein, Aproximativni reseni sdílení tepla při laminárním proudění pro konstantní odpor stëny a jejího okolí, Chem. Pr8m. 24:222 (1974)Google Scholar
  24. 24.
    W. J. Beek and R. Eggink, Warmteoverdracht naar een laminaire stroming van een niet-newtonse vloeistof in een ronde buis, De Ingenieur 77:Ch81 (1962)Google Scholar
  25. 25.
    W. J. Beek and P. B. Kwant, Non-Newtonian heat transfer in round pipes, Paper A.2.6 presented on the 4th Congress CHISA, Prague, September 1972Google Scholar
  26. 26.
    K. Wichterle, Thermal entrance region under highly non-isoviscous flow, Coll. Czech. Chem. Commun. 39:2359 (1972)Google Scholar
  27. 27.
    K. Wichterle and O. Kh. Dakhin, Viscous dissipation during heat transfer in a pipe, Coll. Czech. Chem. Commun. 40:3804 (1975)Google Scholar
  28. 27a.
    ibid 42:793 (1977)Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • Kamil Wichterle
    • 1
  1. 1.Institut of Chemical Process FundamentalsCzechoslovak Academy of SciencesPragueCzechoslovakia

Personalised recommendations