Rheology pp 243-262 | Cite as

The Glass Transition of Amorphous Polymers and the Free Volume

  • Friedrich R. Schwarzl


Linear viscoelastic shear behaviour of amorphous polymers obeys the time temperature superposition principle, as has been known for more than thirty years1)2). This principle states that viscoelastic characteristic functions measured at different temperatures may be brought to coincide by parallel shifts along the logarithmic time or frequency axis. If, for instance, J(t,T) represents the creep compliance as a function of the creep time t at the temperature T, the creep compliances at temperatures T and To should be connected by the relation
$$ a = a\left( {T,{T_{O}}} \right) $$
$$ a = a\left( {T,{T_{O}}} \right) $$
is a function of the temperatures T and To only. log a(T,To) is the shift to be applied along the logarithmic time axis to obtain superposition. It is called the time-temperature shift function.


Glass Transition Free Volume Flow Transition Glassy State Amorphous Polymer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Leaderman, Elastic and Creep Properties of Filamentous Materials and Other High Polymers, The Textile Foundation, Washington, 1943.Google Scholar
  2. 2.
    A.V. Tobolsky and R.D. Andrews, J. Chem.Phys. 11, 125 (1943).CrossRefGoogle Scholar
  3. 3.
    M.L. Williams, R.F. Landel and J.D. Ferry, J. Amer. Chem. Soc. 77, 3701 (1955).CrossRefGoogle Scholar
  4. 4.
    J.D. Ferry, Viscoelastic Properties of Polymers, Second Ed. John Wiley, New York 1970, page 316.Google Scholar
  5. 5.
    A.K. Doolittle, J.Appl.Phys. 22,1471 (1951)CrossRefGoogle Scholar
  6. 5a.
    A.K. Doolittle, J.Appl.Phys. 23,236 (1952).CrossRefGoogle Scholar
  7. 6.
    F.R. Schwarzl and F. Zahradnik, Rheol.Acta in press.Google Scholar
  8. 7.
    D.J. Plazek and V.M. O’Rourke, J. Polymer Sci. A2 9, 209 (1971).CrossRefGoogle Scholar
  9. 8.
    S. Onogi, T. Masuda and K. Kitagawa, Macromol. 3, 109 (1970).CrossRefGoogle Scholar
  10. 9.
    U. Brettschneider, Dilatometrische Messungen am System Polystyrol-Äthylbenzol, thesis Techn. Universität Clausthal 1977.Google Scholar
  11. 10.
    M.H. Cohen and D. Turnball, J.Chem.Phys. 31, 1164(1959)CrossRefGoogle Scholar
  12. 11.
    J.M. Hutchinson and A.J. Kovacs J.Pol.Sci. 14, 1575 (1976).Google Scholar
  13. 12.
    L.C.E. Struik, Physical aging in amorphous polymers and other materials, thesis Techn. Univ. Delft 1977.Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • Friedrich R. Schwarzl
    • 1
  1. 1.Polymer Department of the Institute of Material SciencesUniversity Erlangen-NürnbergErlangenGermany

Personalised recommendations