Rheology pp 195-218 | Cite as

Separation of Shear Thinning and Elastic Effects in Experimental Rheology

  • David Boger


The development of non shear-thinning elastic fluids and their use to isolate elastic effects in experimental rheology is reviewed. On the basis of experiments conducted to date, it seems clear that it is conceptually inadequate to apply what might be called “second-order or Maxwell thinking” in the analysis of any but perhaps extensional flows. Large qualitative effects in complex flows of viscoelastic fluids are associated with deformation rate regions in which the normal stresses are not quadratic, or for the constant viscosity elastic fluids, in deformation rate regions where the shear modulus is deformation rate dependent. Experiments illustrate that in the context of slow flow expansions, fluid elasticity does not appear to be a dominant variable until “fourth order effects” are present.


Shear Rate Viscoelastic Fluid Normal Stress Difference Weissenberg Number Elastic Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. R. Willets, Letter to the Editor, Physics Today 20:11 (1967).CrossRefGoogle Scholar
  2. 2.
    K. Walters, Developments in Non-Newtonian Fluid Mechanics — A Personal View, J. Non-Newtonian Fluid Mech., 5:113 (1979).CrossRefGoogle Scholar
  3. 3.
    C. D. Han, On Slit and Capillary Rheometry, Trans. Soc. Rheol., 18:163 (1974).CrossRefGoogle Scholar
  4. 4.
    S. C. Stinson, Rheometers Aid Plastics’ Process Control, Chem.Engr. News, June 11, 26 (1979).Google Scholar
  5. 5.
    D. G. Baird and A. S. Lodge, The Stressmeter, Rheology ResearchCenter Report No. 27, The University of Wisconsin, Madison Wis., USA (1976).Google Scholar
  6. 6.
    D. M. Binding and K. Walters, Elasticc-Viscous Squeeze Films, Part 3. The Torsional-Balance Rheometer, J. Non-Newtonian Fluid Mech., 1:277 (1976).CrossRefGoogle Scholar
  7. 7.
    D. V. Boger and M. M. Denn, Capillary and Slit Methods of Normal Stress Measurements, J. Non-Newtonian Fluid Mech., 6:163 (1980).CrossRefGoogle Scholar
  8. 8.
    J. L. White and A. Kondo, Flow Patterns in Polethylene and Polystyrene Melts During Extrusions Through a Die Entry Region: Measurement and Interpretation, J. Non-Newtonian Fluid Mech., 3:41 (1977).CrossRefGoogle Scholar
  9. 9.
    K. S. Hyun, End Corrections in Capillary Flow of Polystyrene Melts, Polym. Eng. Sci., 14:666 (1974).CrossRefGoogle Scholar
  10. 10.
    C. D. Han and L.H. Drexler, Studies of Converging Flows of Viscoelastic Polymer Melts. I. Stress-Birefringent Measurements in the Entrance Region of a Sharp-Edged Slit Die, II. Velocity Measurements in the Entrance Region of a Tapered Slit Die, III. Stress and Velocity Distributions in the Entrance Region of a Tapered Die, J. of Appl. Polym. Sci., 17:2329 (1973).CrossRefGoogle Scholar
  11. 11.
    J. Vlachopoulos, Die Swell and Melt Fracture: Effects of Molecular Weight Distribution, Rheol. Acta, 13:223 (1974).CrossRefGoogle Scholar
  12. 12.
    I. Jen Chen, A Comparative Study of Rheological Models for Polymer Melts, Ph.D. Thesis, University of Tennessee, Knoxville, Tenn., USA (1971).Google Scholar
  13. 13.
    T. H. Nguyen, The Influence of Elasticity on Die Entry Flow, Ph.D. Thesis, Monash University, Melbourne, Australia (1978).Google Scholar
  14. 14.
    Y. Ide and J. L. White, Experimental Study of Elongation Flow and Failure of Polymer Melts, J. Appl. Polym. Sci., 22:1061 (1978).CrossRefGoogle Scholar
  15. 15.
    J. L. Duda and J. S. Vrentas, Pressure Losses in Non-Newtonian Entrance Flows, Cart. J. Chem. Engr., 50, 671 (1972).CrossRefGoogle Scholar
  16. 16.
    J. L. Duda and J. S. Vrentas, Entrance Flows of Non-Newtonian Fluids, Trans. Soc. Rheol., 17:89 (1973).CrossRefGoogle Scholar
  17. 17.
    D. V. Boger, R. Gupta, and R. I. Tanner, The End Correction for Power-Law Fluids in the Capillary Rheometer, J. Non-Newtonian Fluid Mech., 4:239 (1978).CrossRefGoogle Scholar
  18. 18.
    S. W. Hopke and J. W. Slattery, Upper and Lower Bounds on the Drag Coefficient of a Sphere in an Ellis Fluid, A.I.Ch.E.J., 16:224 (1970a).CrossRefGoogle Scholar
  19. 19.
    P. J. Cable and D. V. Boger, A Comprehensive Experimental Investigation of Tubular Entry Flow of Viscoelastic Fluids -Part 1, Vortex Characteristics, A.I.Ch.E.J., 24:869 (1978)CrossRefGoogle Scholar
  20. 19a.
    P. J. Cable and D. V. Boger, A Comprehensive Experimental Investigation of Tubular Entry Flow of Viscoelastic Fluids -Part 2, Vortex Characteristics, The Velocity Field, A.I.Ch.E.J., 24:992 (1978)CrossRefGoogle Scholar
  21. 19b.
    P. J. Cable and D. V. Boger, A Comprehensive Experimental Investigation of Tubular Entry Flow of Viscoelastic Fluids -Part III, Vortex Characteristics, Unstable Flow, A.I.Ch.E.J., 25:152 (1979).CrossRefGoogle Scholar
  22. 20.
    A. L. Halmos and D. V. Boger, Flow of Viscoelastic Polymer Solutions Through an Abrupt Expansion, Tran. Soc. Rheol., 20:253 (1976).CrossRefGoogle Scholar
  23. 21.
    A. V. Rama Murthy and J. C. H. McAdam, Velocity Measurements in the Die Entry Region of a Capillary Rheometer, In Press, J. of Rheol., (1980).Google Scholar
  24. 22.
    B. Mena and O. Manero, Non-Newtonian Flow in Oscillating Pipes, Proc. 7th Int. Congr. Rheol., Gothenburg, Sweden, 400 (1976).Google Scholar
  25. 23.
    B. Mena, O. Manero and D. M. Binding, Complex Flow of Viscoelastic Fluids Through Oscillating Pipes, Interesting Effects and Applications, J. Non-Newtonian Fluid Mech., 5:427 (1979).CrossRefGoogle Scholar
  26. 24.
    V. H. Giesekus, Die Sekundärströmung in einer Kegel-Platte-Anordnung: Abhängigkeit von der Rotationsgeschwindeg bei verschiedenen Polymersystemen, Rheol. Acta, 6:339 (1967).CrossRefGoogle Scholar
  27. 25.
    B. D. Coleman and H. Markovitz, Normal Stress Effects in Second Order Fluids, J. Appl. Phys., 35:1 (1964).CrossRefGoogle Scholar
  28. 26.
    D. V. Boger and H. Nguyen, A Model Viscoelastic Fluid, Polym. Eng. Sci., 18:1037 (1978).CrossRefGoogle Scholar
  29. 27.
    G. J. Donnelly and C. B. Weinberger, Stability of Fibre Spinning of a Newtonian Fluid, Ind. Eng. Chem. Fund., 14:334 (1975).CrossRefGoogle Scholar
  30. 28.
    D. V. Boger, A Highly Elastic Constant-Viscosity Fluid, J. Non-Newtonian Fluid Mech., 3:87 (1977/1978).CrossRefGoogle Scholar
  31. 29.
    J. R. Black, M. M. Denn and G. C. Hsiao, Creeping Flow of a Viscoelastic Liquid Through a Contraction: A Numerical Perturbation Solution, in “Theoretical Rheology”, J. F. Hutton, J. R. A. Pearson and K. Walters, eds., Appl. Sci. Publ., London (1975).Google Scholar
  32. 30.
    D. V. Boger and R. Binnington, Separation of Elastic and Shear-Thinning Effects in Capillary Rheometry, Trans. Soc. Rheol., 21:515 (1977).CrossRefGoogle Scholar
  33. 31.
    J. C. Chang, Department of Chemical Engineering, University of Delaware, Newark, Delaware USA, Private Communication (1977).Google Scholar
  34. 32.
    K. F. Wissbrun, Celanese Research Company, Summit, N.J., USA, Private Communication (1978).Google Scholar
  35. 33.
    C. Macosko, Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minn., USA, Private Communication (1978).Google Scholar
  36. 34.
    K. Walters, Department of Applied Mathematics, The University College of Wales, Aberystwyth, Wales, Private Communication (1978).Google Scholar
  37. 35.
    F. N. Cogswell, Converging Flow of Polymer Melts in Extrusion Dies, Polym. Engr. Sci., 12:64 (1972).CrossRefGoogle Scholar
  38. 36.
    T. H. Hang and D. V. Boger, Excess Pressure Loss and Extensional Viscosity Measurements in Die Entry Flow, In Press, Polym. Engr. Sci., (1980).Google Scholar
  39. 37.
    Y. Kuo and R. I. Tanner, On the Use of Open-Channel Flows to Measure the Second Normal Stress Difference, Rheol. Acta, 13:443 (1974).CrossRefGoogle Scholar
  40. 38.
    M. Keentok and R. I. Tanner, The Measurement of Viscometric Functions for Viscoelastic Liquids, Proceedings of the First National Conference on Rheology, British Society of Rheology-Australian Branch, Monash University, Melbourne, 17 (1979).Google Scholar
  41. 39.
    S. I. Abdel-Khalik, Ole Hassager and R. Byron Bird, Prediction of Melt Elasticity from Viscosity Data, Polym. Engr. Sci., 14:859 (1974).CrossRefGoogle Scholar
  42. 40.
    M. M. Cross, Relation Between Viscoelasticity and Shear-Thinning Behaviour in Liquids, Rheol. Acta, 18:609 (1979).CrossRefGoogle Scholar
  43. 41.
    J. C. Chang and M. M. Denn, An Experimental Study of Isothermal Spinning of a Newtonian and a Viscoelastic Liquid, J. Non-Newtonian Fluid Mech., 5:369 (1979).CrossRefGoogle Scholar
  44. 42.
    A. V. Rama Murthy, Mineral Engineering Division, CSIRO, Melbourne, Australia, Private Communication (1978) and Published in Reference 7.Google Scholar
  45. 43.
    R. P. Chhabra, P. H. T. Uhlherr and D. V. Boger, The Influence of Fluid Elasticity on the Drag Coefficient for Creeping Flow Around a Sphere, J. Non-Newtonian Fluid Mech., 6:187 (1980).CrossRefGoogle Scholar
  46. 44.
    H. Nguyen and D. V. Boger, The Kinematics and Stability of Die Entry Flows, J. Non-Newtonian Fluid Mech., 5:353 (1979).CrossRefGoogle Scholar
  47. 45.
    H. Nguyen and D. V. Boger, The Influence of Fluid Elasticity on Die Entry Flows; Part 1, Stable Flow, Part 2 Unstable Flow, In Press, J. Non-Newtonian Fluid Mech. (1980).Google Scholar
  48. 46.
    D. Sigli and M. Countanceau, Effect of Finite Boundaries on the Slow Laminar Isothermal Flow of a Viscoelastic Fluid Around a Spherical Obstacle, J. Non-Newtonian Fluid Mech., 2:1 (1977).CrossRefGoogle Scholar
  49. 47.
    J. Broadbent and B. Mena, Slow Flow of an Elasticoviscous Fluid Past Cylinders and Spheres, Chem. Eng. J., 8:11 (1974).CrossRefGoogle Scholar
  50. 48.
    A. Acharya, R. A. Mashelkar and J. Ulbrecht, Flow of Inelastic and Viscoelastic Fluids Past a Sphere, Rheol. Acta, 15:454 (1976).CrossRefGoogle Scholar
  51. 49.
    H. Kato, M. Tachibana and K. Oikawa, On the Drag on a Sphere in Polymer Solutions, Bull. J.S.M.E., 15:1556 (1972).CrossRefGoogle Scholar
  52. 50.
    M. J. Crochet, The Flow of a Maxwell Fluid Around a Sphere, Manuscript of Paper Presented at 3rd Int. Cong. on Finite Elements in Fluids, Calgary, Alberta, Canada, June (1980).Google Scholar
  53. 51.
    M. J. Crochet and G. Pilate, Plane Flow of a Fluid of Second-Grade Through a Contraction, J. Non-Newtonian Fluid Mech., 1:247 (1976).CrossRefGoogle Scholar
  54. 52.
    M. J. Crochet and M. Bezy, Numerical Solution for the Flow of Viscoelastic Fluids, J. Non-Newtonian Fluid Mech., 5:201 (1979).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • David Boger
    • 1
  1. 1.Department of Chemical EngineeringMonash UniversityClaytonAustria

Personalised recommendations