Advertisement

Quasiperiodic and Stochastic Intramolecular Dynamics: The Nature of Intramolecular Energy Transfer

  • Stuart A. Rice
Part of the NATO Advanced Study Institutes Series book series (volume 57)

Abstract

These lectures are intended to provide an elementary account of the nature of intramolecular energy transfer in isolated molecules. This subject has attracted considerable attention recently, in part because of advances in classical mechanics and in part in response to the need for analysis of the consequences of selective photoexcitation of molecules. The relevant literature is now quite extensive, and it contains contributions representing an enormous range of approaches and goals. Moreover, the techniques of analysis used range from abstract topological description of the general behaviour of a class of systems to numerical integration of the equations of motion of a particular system. In the limited time (and space) available for these lectures I can do no more than sketch some of the principle ideas advanced. Insofar as it is possible I will focus attention on the dynamics of intramolecular energy exchange, that is on the time evolution of nonstationary states of an isolated molecule.

Keywords

Periodic Orbit Wigner Function Rotation Number Stochastic Behaviour Nonlinear Resonance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S.A. Rice in Advances in Laser Chemistry, ed. A. Zewail, Springer-Verlag, Berlin (1978), p.2.CrossRefGoogle Scholar
  2. 2.
    See, for example, Topics in Nonlinear Dynamics, ed. S. Jorna, A.I.P. Conf. Proc. 46, New York (1978).Google Scholar
  3. 3.
    The Toda system, described in Section 2, is one such exception.Google Scholar
  4. 4.
    J. Ford, Adv.Chem.Phys. 24, 155 (1973).CrossRefGoogle Scholar
  5. 4a.
    J. Ford, in Fundamental Problems in Statistical Mechanics, Vol. 3, ed. E.D.G. Cohen, North Holland, Amsterdam (1975), p.215.Google Scholar
  6. 5.
    M.V. Berry in Ref. 2, p.16.Google Scholar
  7. 6.
    See G. Benettin, C. Froeschle and J.P. Scheidecker, Phys. Rev. A19, 2454 (1979), and references cited therein.MathSciNetADSGoogle Scholar
  8. 7.
    A good description of isolating and nonisolating integrals of the motion is given in G. Contoupolos, Astrophys. J. 138, 1297 (1963).MathSciNetADSCrossRefGoogle Scholar
  9. 8.
    See, for example, V.I. Arnold and A. Avez, Ergodic Problems of Classical Mechanics, Benjamin, N.Y. (1968), Y.M. Treve in Ref. 2, p.147.Google Scholar
  10. 9.
    M. Henon and C. Heiles, Astron. J. 69, 73 (1964).MathSciNetADSCrossRefGoogle Scholar
  11. 10.
    See Section 4.Google Scholar
  12. 11.
    G.H. Walker and J. Ford, Phys. Rev. 188, 416 (1969).MathSciNetADSCrossRefGoogle Scholar
  13. 12.
    J. Ford and G.H. Lunsford, Phys. Rev. A1, 59 (1970).ADSGoogle Scholar
  14. 13.
    G.M. Zaslavskii and B.V. Chirikov, Sov. Phys. Usp. 14, 549 (1972).MathSciNetADSMATHCrossRefGoogle Scholar
  15. 13a.
    B.V. Chirikov, Research Concerning the Theory of Nonlinear Resonances and Stochasticity, Novosibirsk, U.S.S.R. (1969), unpublished, translated as CERN 71–40 Geneva (1971).Google Scholar
  16. 14.
    H. Poincaré, Les Methodes Nouvelles de la Mecanique Celeste, Dover, N.Y.(1957).MATHGoogle Scholar
  17. 15.
    I have made extensive use of the very clear presentation of M.V. Berry, Ref. 5, in the following paragraphs.Google Scholar
  18. 16.
    G.D. Birkhoff, Dynamical Systems, Am. Math. Soc., Providence, R.I., revised edn. (1966).MATHGoogle Scholar
  19. 17.
    M. Toda, Prog. Theor. Phys. Suppl. 45, 174 (1970)ADSCrossRefGoogle Scholar
  20. 17a.
    M. Toda, Prog. Theor. Phys. Suppl. 59, 1 (1976).ADSCrossRefGoogle Scholar
  21. 17b.
    M. Toda, Phys. Repts. Phys. Lett. C. (Netherlands) 18, 1 (1975).Google Scholar
  22. 18.
    J. Ford, S.D. Stoddard and J.S. Turner, Prog. Theor. Phys. 50, 1547 (1973).ADSCrossRefGoogle Scholar
  23. 19.
    Two books that give excellent treatments are: A.H. Nayfeh, Perturbation Methods, Wiley, N.Y. (1973)MATHGoogle Scholar
  24. 19a.
    G. Giacaglia, Perturbation Methods in Nonlinear Systems, Springer-Verlag, Berlin (1972).CrossRefGoogle Scholar
  25. 20.
    A. Lindstedt, Astron. Nach. 103, Col. 211 (1882); H. Poincaré, Ref. 14.ADSMATHCrossRefGoogle Scholar
  26. 21.
    P.A. Sturrock, Plasma Hydromagnetics, Stanford Univ. Press, Stanford, Calif. (1962).Google Scholar
  27. 22.
    E.A. Frieman, J. Math. Phys. 4, 410 (1963).MathSciNetADSMATHCrossRefGoogle Scholar
  28. 23.
    A.H. Nayfeh, J. Math. and Phys. 44, 368 (1965).MathSciNetMATHGoogle Scholar
  29. 24.
    G. Sandri, Nuovo Cimento B36, 67 (1967).MathSciNetGoogle Scholar
  30. 24a.
    H.R. Wilson and S.A. Rice, J. Chem. Phys. 49, 1697 (1968).ADSCrossRefGoogle Scholar
  31. 25.
    B. Van der Pol, Phil. Mag. 43, 700 (1926).Google Scholar
  32. 26.
    N. Krylov and N.N. Bogoliubov, Introduction to Nonlinear Mechanics, Princeton Univ. Press, Princeton, N.J. (1947).Google Scholar
  33. 26a.
    N.N. Bogoliubov and Y.A. Mitropolski, Asymptotic Methods in the Theory of Nonlinear Oscillations, Gordon and Breach, N.Y. (1961).Google Scholar
  34. 27.
    M. Kruskal, J. Math. Phys. 3, 806 (1962).MathSciNetADSMATHCrossRefGoogle Scholar
  35. 28.
    H. Von Zeipel, Ark. Mat. Astron. Fysik (Stockholm 11, No.1, 1; No. 7, 1 (1916).Google Scholar
  36. 29.
    G.I. Hori, Publ. Astron. Soc. Japan 18, 287 (1966)ADSGoogle Scholar
  37. 29a.
    G.I. Hori, Publ. Astron. Soc. Japan 22, 191 (1970).ADSGoogle Scholar
  38. 30.
    A. Deprit, Celest. Mech. 1, 12 (1969).MathSciNetADSMATHCrossRefGoogle Scholar
  39. 31.
    A.A. Kamel, Celest. Mech. 1, 190 (1969)MathSciNetADSMATHCrossRefGoogle Scholar
  40. 31a.
    A.A. Kamel, Celest. Mech. 3, 90 (1970)MathSciNetADSMATHCrossRefGoogle Scholar
  41. 31b.
    A.A. Kamel, Celest. Mech. 4, 397 (1971).MathSciNetADSMATHCrossRefGoogle Scholar
  42. 32.
    J.M.A. Danby, Celest.Mech. 8, 273 (1973).MathSciNetADSMATHCrossRefGoogle Scholar
  43. 33.
    G. Contoupolos, Astron. J. 75, 96 (1970).ADSCrossRefGoogle Scholar
  44. 34.
    B. Barbanis, Astron. J. 71, 415 (1966).ADSCrossRefGoogle Scholar
  45. 35.
    R. Helleman and T. Bountis in Stochastic Behaviour in Classical and Quantum Hamiltonian Systems, Springer-Verlag, Berlin (1979), p.353.CrossRefGoogle Scholar
  46. 36.
    F.G. Gustavson, Astron. J. 71, 670 (1966).ADSCrossRefGoogle Scholar
  47. 37.
    G. Contoupolos, L. Galgani and A. Giorgilli; Phys. Rev. A18, 1183 (1978).ADSGoogle Scholar
  48. 38.
    K.S.J. Nordholm and S.A. Rice, J. Chem. Phys. 61, 203 (1974)ADSCrossRefGoogle Scholar
  49. 38a.
    K.S.J. Nordholm and S.A. Rice, J. Chem. Phys. 61, 768 (1974).ADSCrossRefGoogle Scholar
  50. 39.
    R.M. Stratt, N.C. Handy and W.H. Miller, submitted to J. Chem. Phys.Google Scholar
  51. 40.
    N. Pomphrey, J. Phys. B7, 1909 (1974).ADSGoogle Scholar
  52. 40a.
    E.J. Heller, Chem. Phys. Lett. 60, 338 (1979).ADSCrossRefGoogle Scholar
  53. 40b.
    R. Kosloff and S.A. Rice, submitted to Chem. Phys. Lett.Google Scholar
  54. 40c.
    A. Peress, Am. J. Phys. 42, 886 (1974).ADSCrossRefGoogle Scholar
  55. 40d.
    R. Kosloff, Adv. Chem. Phys., to be published.Google Scholar
  56. 41.
    C. Jaffe and W. Reinhardt, submitted to J. Chem. Phys.Google Scholar
  57. 42.
    P. Pechukas, J. Chem. Phys. 57, 5577 (1972).ADSCrossRefGoogle Scholar
  58. 43.
    R.A. Marcus, D.W. Noid and M.L. Koszykowski, in Stochastic Behaviour in Classical and Quantum Hamiltonian Systems, ed. G. Casati and J. Ford, Springer-Verlag, Berlin (1979), p.283.CrossRefGoogle Scholar
  59. 44.
    For a review see I.C. Percival, Adv. Chem. Phys. 36, 1 (1977)CrossRefGoogle Scholar
  60. 44a.
    I.C. Percival, J. Phys. A7, 794 (1974)MathSciNetADSGoogle Scholar
  61. 44b.
    I.C. Percival and N. Pomphrey, J. Phys. B31, 97 (1976).Google Scholar
  62. 45.
    M.V. Berry, Phil. Trans. Roy. Soc. (London) A287, 237 (1977)ADSGoogle Scholar
  63. 45a.
    M.V. Berry, J. Phys. A10, 2083 (1977)ADSGoogle Scholar
  64. 45b.
    M.V. Berry and M. Tabor, Proc. Roy. Soc. (London) A349, 101 (1976).MathSciNetADSGoogle Scholar
  65. 46.
    S. Chapman, B.C. Garrett and W.H. Miller, J. Chem. Phys. 64, 502 (1976)MathSciNetADSCrossRefGoogle Scholar
  66. 46a.
    W.H. Miller, J. Chem. Phys. 63, 936 (1975).Google Scholar
  67. 47.
    D.W. Noid and R.A. Marcus, J. Chem. Phys. 62, 2119 (1975)ADSCrossRefGoogle Scholar
  68. 47a.
    W. Eastes and R.A. Marcus, J. Chem. Phys. 61, 4301 (1974).ADSCrossRefGoogle Scholar
  69. 48.
    R.T. Swimm and J.B. Delos, J. Chem. Phys. in press; also in Stochastic Behaviour in Classical and Quantum Hamiltonian Systems, eds. G. Casati and J. Ford, Springer-Verlag, Berlin (1979), p.306.Google Scholar
  70. 49.
    M.C. Gutzwiller, J. Math. Phys. 8, 1979 (1967)ADSCrossRefGoogle Scholar
  71. 49a.
    M.C. Gutzwiller, J. Math. Phys. 10, 1004 (1969)ADSCrossRefGoogle Scholar
  72. 49b.
    M.C. Gutzwiller, J. Math. Phys. 11, 1971 (1970)CrossRefGoogle Scholar
  73. 49c.
    M.C. Gutzwiller, J. Math. Phys. 12, 343 (1971).ADSCrossRefGoogle Scholar
  74. 50.
    The quantity δ is usually 1/2, but can be different. See, for example, Ref. 5.Google Scholar
  75. 51.
    G.C. Schatz and T. Mulloney, J. Phys. Chem. 83, 989 (1979).CrossRefGoogle Scholar
  76. 52.
    M. Born, The Mechanics of the Atom, G. Bell & Sons, London. (1927).MATHGoogle Scholar
  77. 53.
    J.S. Hutchinson and R.E. Wyatt, private communication.Google Scholar
  78. 54.
    These investigations are discussed in Section 4.Google Scholar
  79. 55.
    K.S.J. Nordholm and S.A. Rice, J. Chem. Phys. 62, 157 (1975).ADSCrossRefGoogle Scholar
  80. 56.
    C.A. Parr and A. Kuperman, from C.A. Parr, Ph.D. thesis, California Institute of Technology (1968).Google Scholar
  81. 57.
    See, for example, S.A. Rice in Excited States, Vol. II, ed. E.C. Lim, Academic Press, N.Y. (1975), p.112.Google Scholar
  82. 58.
    K.G. Kay and S.A. Rice, J. Chem. Phys. 57, 3041 (1972).ADSCrossRefGoogle Scholar
  83. 59.
    E.J. Heller and S.A. Rice, J. Chem. Phys. 61, 936 (1974).ADSCrossRefGoogle Scholar
  84. 60.
    M. Muthukumar and S.A. Rice, J. Chem. Phys. 69, 1619 (1978).ADSCrossRefGoogle Scholar
  85. 61.
    W.M. Gelbart, S.A. Rice and K.F. Freed, J. Chem. Phys. 57, 4699 (1972).ADSCrossRefGoogle Scholar
  86. 62.
    K.G. Kay, J. Chem. Phys. 61, 5205 (1974).ADSCrossRefGoogle Scholar
  87. 63.
    L. Van Hove, Physica 21, 517 (1955)MathSciNetMATHCrossRefGoogle Scholar
  88. 63a.
    L. Van Hove, Physica 23, 441 (1957)MathSciNetADSMATHCrossRefGoogle Scholar
  89. 63b.
    L. Van Hove, Physica 25, 268 (1959).MathSciNetADSMATHCrossRefGoogle Scholar
  90. 64.
    K.F. Freed, Disc. Faraday Soc. 55., 68 (1973).Google Scholar
  91. 65.
    P. Brumer and J.W. Duff, J. Chem. Phys. 65, 3566 (1976).ADSCrossRefGoogle Scholar
  92. 65a.
    J.W. Duff and P. Brumer, J. Chem. Phys. 67, 4898 (1977).ADSCrossRefGoogle Scholar
  93. 66.
    M. Toda, Phys. Lett. A48, 335 (1974).MathSciNetADSGoogle Scholar
  94. 67.
    J.W. Duff and P. Brumer, J. Chem. Phys. 67, 4898 (1977).ADSCrossRefGoogle Scholar
  95. 68.
    C. Cerjan and W. Reinhardt, submitted to J. Chem. Phys.Google Scholar
  96. 68a.
    K.D. Hansel, Chem. Phys. 33, 35 (1979).ADSCrossRefGoogle Scholar
  97. 68b.
    K.D. Hansel, preprint.Google Scholar
  98. 69.
    B.V. Chirikov, A Universal Instability of Many-Dimensional Oscillator Systems, preprint; Research Concerning the Theory of Nonlinear Resonances and Stochasticity, CERN 71–40 Geneva (1971).Google Scholar
  99. 70.
    G.M. Zaslavskii and B.V. Chirikov, Sov. Phys. Usp. 14, 549 (1972).MathSciNetADSMATHCrossRefGoogle Scholar
  100. 71.
    D.W. Oxtoby and S.A. Rice, J. Chem. Phys. 65, 1676 (1976).ADSCrossRefGoogle Scholar
  101. 72.
    D. Bunker, J. Chem. Phys. 37, 393 (1962)ADSCrossRefGoogle Scholar
  102. 72a.
    D. Bunker, J. Chem. Phys. 59, 4621 (1973).ADSCrossRefGoogle Scholar
  103. 73.
    K.C. Mo, Physica 57, 445 (1972).ADSCrossRefGoogle Scholar
  104. 74.
    H. Mori, Prog. Theor. Phys. 34, 399 (1965).ADSCrossRefGoogle Scholar
  105. 75.
    M. Tabor, private communication.Google Scholar
  106. 76.
    J.M. Greene, J. Math. Phys. 9, 760 (1968)MathSciNetADSMATHCrossRefGoogle Scholar
  107. 76.
    J.M. Greene, J. Math. Phys. 20, 1183 (1979); KAM Surfaces Computed from the Henon-Heiles Hamiltonian, preprint.ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • Stuart A. Rice
    • 1
  1. 1.The Department of Chemistry and The James’ Franck InstituteThe University of ChicagoChicagoUSA

Personalised recommendations