Spectral Properties of Atomic and Molecular Systems

  • J. M. Combes
  • R. Seiler
Part of the NATO Advanced Study Institutes Series book series (volume 57)


These first two chapters are intended to give a survey of presently known methods and results in N-body Schrödinger operator theory with applications to the specific situation where interactions are of the Coulomb type. They will provide the mathematical basis for the subsequent rigorous analysis of the Born-Oppenheimer approximation. We assume that the reader is familiar with the notions of self-adjoint operator, spectral decomposition, Hilbert space structure and other elementary concepts of Functional Analysis e.g. compact operator theory, which can be found in ref. [1] or [2, Vol. 1 and 2].


Spectral Property Molecular System Essential Spectrum Electronic Wave Function Discrete Eigenvalue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Kato, Perturbation Theory of Linear Operators, Berlin-Heidelberg-New York, Springer Verlag, (1966).Google Scholar
  2. 2.
    M. Reed, B. Simon, Methods of Modern Mathematical Physics, Vols. 1–4, Academic Press, (1970–79).Google Scholar
  3. 3.
    F. Treves, Basic linear partial differential equations, Academic Press (1975).MATHGoogle Scholar
  4. 4.
    P. Deift, W. Hunziker, B. Simon, E. Vock, Pointwise bounds on eigenfunctions and wave packets in N-body quantum systems IV, Commun. Math. Phys. 64, 1 (1978).MathSciNetADSMATHCrossRefGoogle Scholar
  5. 5.
    W. Hunziker, Helv. Phys. Acta 39, 451 (1966),MathSciNetMATHGoogle Scholar
  6. 5a.
    W. Hunziker CMP 11, 19–55 (1968).Google Scholar
  7. 6.
    C. Van Winter, H.J. Brascamp, The n-body problem with spin orbit and Coulomb interaction, Comm. Math. Phys. 11, 19 (1968).MathSciNetADSCrossRefGoogle Scholar
  8. 7.
    G.M. Zhislin, Investigation of the spectrum of the Schrödinger operator for a many particle system, Tr.Mosk.Mat.Obs. 9, 81–128 (1960).Google Scholar
  9. 8.
    B. Simon, Geometric methods in multiparticle quantums systems, Commun. Math. Phys. 55, 259–274 (1977).ADSMATHCrossRefGoogle Scholar
  10. 9.
    B. Simon, On the infinitude or finiteness of the number of bound-states of an N-body quantum systems, Helv.Phys. Acta 43, 607 (1970).MathSciNetGoogle Scholar
  11. 10.
    V.N. Effimov, Energy levels from resonant two-body forces in a three-body system, Phys. Lett. 33B, 563 (1970).ADSGoogle Scholar
  12. 11.
    G.M. Zhislin, A.G. Sigalov, On the spectrum of the energy operator for atoms with fixed nucleus, Amer. Math. Soc. Tr. Serv. Vol.91, 297–310.Google Scholar
  13. 12.
    E. Balslev, Spectral theory of Schrodinger operators of many-body systems with permutation and rotation symmetries, Ann. Phys. 73, 49 (1972).MathSciNetADSCrossRefGoogle Scholar
  14. 13.
    J.M. Combes, T.O. Connor, Finiteness of the number of bound states for negative ions, in preparation.Google Scholar
  15. 14.
    J.M. Combes, R. Seiler, Regularity and asymptotic properties of the discrete spectrum of electronic Hamiltonians, Int. J. Quant. Chem. 14, 213 (1978).CrossRefGoogle Scholar
  16. 15.
    J. Morgan, B. Simon, Behaviour of molecular potential energy curves for large nuclear separations, Preprint, to appear in Int. J. Quant. Chem. (1980).Google Scholar
  17. 16.
    M. Born and R. Oppenheimer, Zur Quantentheorie der molekeln, Annalen der Physik 84, 457 (1927).ADSMATHCrossRefGoogle Scholar
  18. 17.
    M. Born and W. Heisenberg; Zur Quantentheorie der molekeln, Annalen der Physik 74, 1 (1924).ADSCrossRefGoogle Scholar
  19. 18.
    E.U. Condon, A theory of intensity distributions in band systems, Phys. Rev. 28, 1182 (1926).ADSMATHCrossRefGoogle Scholar
  20. 19.
    P. Aventini, R. Seiler, On the electronic spectrum of the diatomic molecular ion, Commun. Math. Phys. 41, 119 (1975).MathSciNetADSCrossRefGoogle Scholar
  21. 20.
    H. Narnhofer and W. Thirring, Convexity properties for Coulomb systems, Acta Physica Austriaca 41, 281 (1975).MathSciNetGoogle Scholar
  22. 20.
    E.R. Davidson, J. Chem. Phys. 35, 3527 (1962).Google Scholar
  23. 21.
    E. Lieb and B. Simon, Monotonicity of the electronic contribution to the Born-Oppenheimer energy, J. Phys. BL 537 (1978).MathSciNetGoogle Scholar
  24. 22.
    M. and T. Hoffmann-Osterhoff; to appear in Journal of Physics A (1979).Google Scholar
  25. 23.
    R.A. Buckingham, Trans. Faraday Soc. 54, 453 (1958).CrossRefGoogle Scholar
  26. 24.
    P. Hertel, E. Lieb, W. Thirring, Lower bound to the energy of complex atoms; H. Grosse, P. Hertel, W. Thirring, Lower bounds to the energy levels of atomic and molecular systems, Acta Phys. Austr. 49, 89 (1978).ADSGoogle Scholar
  27. 25.
    V.F. Brattsev, Dokl. Akad. Nauk SSSR 160, 570 (1965).Google Scholar
  28. 26.
    S. Epstein, Ground-state energy of a molecule in the adiabatic approximation, J. Chem. Phys. 44, 836 (1966) andADSCrossRefGoogle Scholar
  29. 26a.
    S. Epstein, Ground-state energy of a molecule in the adiabatic approximation, J. Chem. Phys. 44, 4062 (1966).ADSCrossRefGoogle Scholar
  30. 27.
    J.M. Combes, P. Duclos, R. Seiler, Dirichlet-Neumann decoupling and Krein’s formula I, to appear.Google Scholar
  31. 28.
    J.M. Combes, P. Duclos, R. Seiler, Dirichlet-Neumann decoupling and Krein’s formula II, to appear.Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • J. M. Combes
    • 1
  • R. Seiler
    • 2
  1. 1.Université de ToulonLa GardeFrance
  2. 2.Institut für theoretische Physik Fachbereich PhysikFreie Universität BerlinBerlin 33Germany

Personalised recommendations