The Eckart Hamiltonian for Molecules — A Critical Exposition

  • B. T. Sutcliffe
Part of the NATO Advanced Study Institutes Series book series (volume 57)


For molecules, other than diatomics, the whole notion of molecular structure rests, at present, upon the Eckart Hamiltonian, in the sense that the domain of validity of the Eckart Hamiltonian consists of that collection of molecular wave functions to which the notions of structure can be applied in a widely agreed and unambiguous way. The notion of structure in the Eckart Hamiltonian arises from the peculiar position that the framework co-ordinates occupy in the formalism. It is traditional to interpret these framework co-ordinates as being the equilibrium nuclear positions as expressed in a carefully defined reference frame, which can be called the Eckart frame.


Potential Energy Surface Euler Angle Diatomic Molecule Internuclear Distance Internal Motion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altmann, S.L., 1978, “Induced Representations in Crystals and Molecules”, Academic Press.Google Scholar
  2. Aventini, P. and Seiler, R., 1975, Commun. Math. Phys. 41, 119.MathSciNetADSCrossRefGoogle Scholar
  3. Brester, C.J., 1923, “Kristallsymmetrie und Restrahlen”, Dissertation, Utrecht.Google Scholar
  4. Brink, D.M. and Satchler, G.R., 1968, “Angular Momentum” 2nd Ed., Clarendon Press.Google Scholar
  5. Born, M. and Huang, K., 1954, “Dynamical Theory of Crystal Lattices”, Clarendon Press.MATHGoogle Scholar
  6. Bunker, P.R., 1978, “Molecular Symmetry and Spectroscopy”, Academic Press.Google Scholar
  7. Casimir, H.B.G., 1931, “The Rotation of a Rigid Body in Quantum Mechanics”, J.B. Wolters, Den Haag.Google Scholar
  8. Combes, J-M., 1977, Acta Phys. Austriaca. Suppl.XVII, 139.Google Scholar
  9. Darling, B.T. and Dennison, D.M., 1940, Phys. Rev. 57, 128.ADSCrossRefGoogle Scholar
  10. Eckart, C., 1934, Phys. Rev. 46, 384.ADSCrossRefGoogle Scholar
  11. Eckart, C., 1935, Phys. Rev. 47, 552.ADSCrossRefGoogle Scholar
  12. Essén, H., 1977, “Quantization and Independent Co-ordinates”, USIP Report 77–34, Stockholm.Google Scholar
  13. Essén, H., 1978, Am. J. Phys., 46, 983.ADSCrossRefGoogle Scholar
  14. Essén, H., 1979, “Topics in Molecular Mechanics”, USIP Report 79–08, Stockholm.Google Scholar
  15. Ezra, G.S., 1979, Molec. Phys. 38, 863.MathSciNetADSCrossRefGoogle Scholar
  16. Ferigle, S.M. and Weber, A., 1953, Am. J. Phys. 21, 102.ADSMATHCrossRefGoogle Scholar
  17. Glinthard, H. H., Frei, H., Groner, P. and Bauder, A., 1978, Molec. Phys. 36, 1469.ADSCrossRefGoogle Scholar
  18. Hirschfelder, J.O. and Wigner, E., 1935, Proc. Nat. Acad. Sci. 21, 113.ADSMATHCrossRefGoogle Scholar
  19. Howard, B.J. and Moss, R.E., 1970, Molec. Phys. 19, 433.ADSCrossRefGoogle Scholar
  20. Jørgensen, F., 1978, “On the Molecular Vibration-Rotation Problem”, Dissertation, Copenhagen.Google Scholar
  21. Kemble, E.C., 1937, “The Fundamental Principles of Quantum Mechanics”, McGraw-Hill (Rep. Dover 1955).Google Scholar
  22. Lathouwers, L., 1978, Phys. Rev. A18, 2150.ADSGoogle Scholar
  23. Louck, J.D., 1976, J. Molec. Spec. 61, 107.ADSCrossRefGoogle Scholar
  24. Louck, J.D. and Galbraith, H.N., 1976, Rev. Mod. Phys. 48, 69.MathSciNetADSCrossRefGoogle Scholar
  25. Makushkin, Yu. S. and Ulenikov, O.N., 1977, J. Mol. Spec. 18, 1.ADSCrossRefGoogle Scholar
  26. Marques, N.M. and Borde, J., 1971a, Molec. Phys., 21, 635.ADSCrossRefGoogle Scholar
  27. Marques, N.M. and Bordé, J., 1971b, Molec. Phys., 22, 809.ADSCrossRefGoogle Scholar
  28. Meyer, R. and Günthard, H.H., 1968, J. Chem. Phys. 49, 1510.MathSciNetADSCrossRefGoogle Scholar
  29. Nielsen, H.H., 1951, Rev. Mod. Phys. 23, 90.ADSMATHCrossRefGoogle Scholar
  30. Podolsky, B., 1928, Phys. Rev. 32., 812.ADSMATHCrossRefGoogle Scholar
  31. Sayvetz, A., 1939, J. Chem. Phys., 7, 383. ADSCrossRefGoogle Scholar
  32. Van Vleck, J.H., 1935, Phys. Rev. 47, 487.ADSCrossRefGoogle Scholar
  33. Watson, J.K.G., 1968, Molec. Phys. 15, 479.ADSCrossRefGoogle Scholar
  34. Watson, J.K.G., 1970, Molec. Phys. 19, 465.ADSCrossRefGoogle Scholar
  35. Welker, H., 1936, Zeits. F. Physik 101, 95.ADSCrossRefGoogle Scholar
  36. Wigner, E., 1930, Göttingen Nachricten, 133.Google Scholar
  37. Wilson, E.B. and Howard, J.B., 1936, J. Chem. Phys. 4, 262.Google Scholar
  38. Wilson, E.B., Decius, J.C. and Cross, P.C., 1955, “Molecular Vibrations”, McGraw-Hill.Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • B. T. Sutcliffe
    • 1
  1. 1.Department of ChemistryUniversity of YorkYorkEngland

Personalised recommendations