The Aging Process in the Neuron

  • Kenneth R. Brizzee
  • Craig Knox
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 129)


The neuron as the ultimate anatomical and physiological unit of the nervous system, and the archetype of postreplicative cells of the body, has perhaps received a greater amount of attention as a model for the study of aging processes than any other cell type. Additional interest in the neuron as a subject for aging studies stems from the view that that these elements, in strategic locations in the nervous system, may function as pacemakers, or the central control elements, of the “time clocks” of aging which may determine the onset and rate of senescence (1).


Cerebral Cortex Aging Process Purkinje Neuron Paired Helical Filament Lateral Vestibular Nucleus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. V. Everitt, and J. A. Burgess, eds., “Hypothalamus, Pituitary and Aging,” Charles C. Thomas, New York (1976).Google Scholar
  2. 2.
    T. Hanley, Neuronal “fall-out: in the aging brain: A critical review of the quantitative data, Age and Ageing 3:133 (1974).PubMedCrossRefGoogle Scholar
  3. 3.
    H. A. Johnson and S. Erner, Neuron survival in the aging mouse, Exp. Gerontol. 7:111 (1972).PubMedCrossRefGoogle Scholar
  4. 4.
    L. M. Franks, P. D. Wilson, and R. D. Whelan, The effects of age on total DNA and cell number in the mouse brain, Gerontologist 20:21 (1974).CrossRefGoogle Scholar
  5. 5.
    H. Brody, Organization of the cerebral cortex. III. A study of aging in the human cerebral cortex, J. Comp. Neurol. 102: 511 (1955).PubMedCrossRefGoogle Scholar
  6. 6.
    E. J. Colon, The elderly brain: A quantitative analysis in the cerebral cortex of two cases, Psychiatria, Neurologia, Neurochirurgia (Amst.) 75:261 (1972).Google Scholar
  7. 7.
    B. G. Shefer, The absolute number of nerve cells in cortical depth in normals and in patients with dementia, Pick’s and Alzheimer’s disease, Z. Nevropathol. i Psikhiatrii Imen S.S. Korsakova (Moskva) 72: 1024 (1972).Google Scholar
  8. 8.
    K. R. Brizzee, J. M. Ordy, J. Hansche, and B. Kaack, Quantitative assessment of changes in neuron and glia cell packing density and lipofuscin accumulation with age in the cerebral cortex of a nonhuman primate (Macaca mulatta), in:“Neurobiology of Aging,” R. D. Terry and S. Gershon, eds., Raven Press, New York (1976).Google Scholar
  9. 9.
    H. M. Wisniewski, B. Ghetti, and R. D. Terry, Neuritic (senile) plaques and filamentous changes in aged rhesus monkeys, J. Neuropath. Exp. Neurol. 32:566 (1973).PubMedCrossRefGoogle Scholar
  10. 10.
    J. M. Ordy, K. R. Brizzee, B. Kaack, and J. Hansche, Age differences in short-term memory and cell loss in the cortex of the rat, Gerontology 24:267 (1978).CrossRefGoogle Scholar
  11. 11.
    K. R. Brizzee, N. Sherwood, and P. S. Timiras, A comparison of cell populations at various depth levels in cerebral cortex of young adult and aged Long-Evans rats, J. Gerontol. 23:289 (1968).PubMedGoogle Scholar
  12. 12.
    K. M. Wahal and H. E. Riggs, Changes in the brain associated with senility, AMA Arch, of Neurol. Psychiat. 2:151 (1960).CrossRefGoogle Scholar
  13. 13.
    P. S. Timiras and A. Vernadakis, Structural, biochemical and functional aging of the nervous system, in: “Develomental Physiology and Aging,” P. S. Timiras, ed., Macmillan Publishing Co., New York (1972).Google Scholar
  14. 14.
    D. W. Vaughan and A. Peters, Neuroglial cells inthe cerebral cortex of rats from young adulthood to old age: An electron microscope study, J. Neurocytol. 3:405 (1974).PubMedCrossRefGoogle Scholar
  15. 15.
    E. Uemura and H. A. Hartman, Age-related changes in RNA content and volume of the human hypoglossal neuron, Brain Res. Bull. 3:207 (1978).CrossRefGoogle Scholar
  16. 16.
    E. Uemura and H. A. Hartman, RNA content and volume of nerve cell bodies in human brain: I. Prefrontal cortex in aging normal and demented patients, J. Neuropath. Exp. Neurol. 37:487 (1978).PubMedCrossRefGoogle Scholar
  17. 17.
    R. R. Sturrock, Quantitative and morphological changes in neurons and neuroglia in the indusium griseum of aging mice, J. Gerontol. 32:642 (1977).Google Scholar
  18. 18.
    R. R. Sturrock, Changes in neuroglia and myelination in the white matter of aging mice, J. Gerontol. 31:513 (1976).PubMedGoogle Scholar
  19. 19.
    R. S. Ellis, Norms for some structural changes in the human cerebellum from birth to old age, J. Comp. Neurol. 32:1 (1920).CrossRefGoogle Scholar
  20. 20.
    T. Inukai, On the loss of Purkinje cells with advancing age, from the cerebellar cortex of the albino rat, J. Comp. Neurol. 45:1 (1928).CrossRefGoogle Scholar
  21. 21.
    E. Tarnowska-Dziduszko, Morphological picture of the cerebellum in the course of the aging process, Neuropathol. Pol. 11:199 (1973).Google Scholar
  22. 22.
    T. C. Hall, A. K. H. Miller, and J. A. N. Corsellis, Variations in the human Purkinje cell population according to age and sex, Neuropath. Appi. Neurobiol., 1:267 (1975).CrossRefGoogle Scholar
  23. 23.
    K. J. Hempel and M. Namba. Die involution des Supranucleus medialisdorsalis, soie der Lamella medialis und der Lamells interna thalami, J. Hirnforsch. 4:43 (1958).PubMedGoogle Scholar
  24. 24.
    N. Gellerstedt, “Zue kenntuis der Hirveranderungen bei der Normalen Altersunvolution,” Almquist and Wiksells Boktryckeri-A-B, Uppsala (1933).Google Scholar
  25. 25.
    O. Bugiani, S. Salvarani, F. Perdelli, G. I. Mancardi, and A. Leonardi, Nerve cell loss with aging in the putamen, Europ. Neurol. 17:286 (1978).PubMedCrossRefGoogle Scholar
  26. 26.
    K. R. Brizzee and J. M. Ordy, Age pigments, cell loss and hippocampal function, Mech. Ageing Dev., in press (1978).Google Scholar
  27. 27.
    V. F. Shefer, Hippocampal pathology as a possible factor in the pathogenesis of senile dementias, Neuropath. Exp. Neurol. 8:236 (1977).Google Scholar
  28. 28.
    M. Hansan and P. Glees, Ultrastructural age changes in hippocampal neurons, synapses and neuroglia, Exp. Gerontol. 8:75 (1973).CrossRefGoogle Scholar
  29. 29.
    P. W. Landfield, G. Rose, L. Sandles, T. C. Wohlstadter, and G. Lynch, Patterns of astroglial hypertrophy and neuronnal degeneration in the hippocampus of aged, memory-deficient rats, J. Gerontol. 228:1335 (1970).Google Scholar
  30. 30.
    B. W. Konigsmark and E. A. Murphy, Neuronal populations in the human brain, Nature 228:1335 (1970).PubMedCrossRefGoogle Scholar
  31. 31.
    N. Vijayashankar and H. Brody, A Study of aging in the human abducens nucleus, J. Comp. Neurol. 173:433 (1977).PubMedCrossRefGoogle Scholar
  32. 32.
    P. L. McGeer, E. G. McGeer, and J. S. Suzuki, Aging and extrapyramidal function, Arch. Neurol. 34:33 (1977).PubMedCrossRefGoogle Scholar
  33. 33.
    H. Brody, An examination of cerebral cortex and brain stem aging, in:“Neurobiology of Aging,” R. D. Terry and S. Gershon, eds., Raven Press, New York (1976).Google Scholar
  34. 34.
    R. D. Monagle and H. Brody, The effects of age upon the main nucleus of the inferior olive in the human, J. Comp. Neurol. 155:61 (1974).PubMedCrossRefGoogle Scholar
  35. 35.
    P. Sandoz, Age-related loss of nerve cells from the human inferior olive and unchanged volume of its grey matter, IRCS J. Med. Sci. 5:376 (1977).Google Scholar
  36. 36.
    E. A. Wright and J. M. Spink, A study of the loss of nerve cells in the central nervous system in relation to age, Gerontolgia (Basel) 3:277 (1959).CrossRefGoogle Scholar
  37. 37.
    W. Andrew, and M. A. Bari, Some aspects of age changes in the spinal cord compared with those in other parts of the nervous system, in:“Proceedings of the Fifth International Congress of Neuropathology,” Excerpta Medica Fdn., New York, Internat. Cong. Ser. No. 100 (1965).Google Scholar
  38. 38.
    J. Cammermeyer, Cytological manifestations of aging in rabbit and chinchilla brains, J. Geront. 18:41 (1963).PubMedGoogle Scholar
  39. 39.
    K. R. Brizzee, X. Kharetchko, and L. A. Jacobs, Effects of fetal X-irradiation on aging changes in cerebral cortex, in:“Some Aspects of Internal Irradiation,” Pergamon Press, New York (1962).Google Scholar
  40. 40.
    K. H. Lin, Y. M. Peng, and M. T. Peng, Changes in the nuclear volume of rat hypothalamic neurons in old age, Neuroendrocrinology 21:247 (1976).CrossRefGoogle Scholar
  41. 41.
    I. Klatzo, Uber das verhaltern des nukleolarapparates in den menschlichen pallidumzellen, J. Hirsforsch. 1:47 (1954).Google Scholar
  42. 42.
    F. Sanides, Untersuchungen uber die histologische struktur des mandelkerngebietes, J. Hirnforsh. 3:56 (1957).Google Scholar
  43. 43.
    K. R. Brizzee, P. Klara, and J. E. Johnson, Changes in microanatomy, neurocytology and fine structure with aging, in: “Neurobiology of Aging: An Interdisciplinary Life Span Approach,” J. M. Ordy and K. R. Brizzee, eds., Plenum Press, New York (1975).Google Scholar
  44. 44.
    P. Timiras, Degenerative changes in cells and cell death, in: “Developmental Physiology and Aging,” P. S. Timiras, ed., Macmillan Publishing Co., New York (1972).Google Scholar
  45. 45.
    J. E. Johnson and J. Miquel, Fine structural changes in the lateral vestibular nucleus of aging rats, Mech. Ageing Dev. 3:203 (1974).PubMedCrossRefGoogle Scholar
  46. 46.
    V. Zs-Nagy, C. Bertoni-Freddari, I. Zs-Nagy, C. Pieri, and G. Guili, Alterations in the numerical density of perichronatin granules in different tissues during ageing and cell differentiation, Gerontology 23:267 (1977).PubMedCrossRefGoogle Scholar
  47. 47.
    D. M. A. Mann and P. O. Yates, Lipofuscin pigments-their relationship to ageing in the human nervous system. I. The lipofuscin content of nerve cells, Brain 97:481 (1974).PubMedCrossRefGoogle Scholar
  48. 48.
    D. M. A. Mann and P. O. Yates, Lipofuscin pigments-their relationship to ageing in the human nervous system. II. The melanin content of pigmented nerve cells, Brain 97:489 (1974).PubMedCrossRefGoogle Scholar
  49. 49.
    S. S. Sekhon and D. S. Maxwell, Ultrastructural changes in neurons of the spinal anterior horn of ageing mice with particular reference to the accumulation of lipofuscin pigment, J. Neurocytol. 3:59 (1974).PubMedCrossRefGoogle Scholar
  50. 50.
    W. Andrew, The Golgi apparatus in the nerve cells of the mouse from youth to senility, Am. J. Anat. 64:351 (1937).CrossRefGoogle Scholar
  51. 51.
    J. E. Johnson, W. R. Mehler, and J. Miquel, A fine structural study of degenerative changes in the dorsal column nuclei of aging mice. Lack of protection by vitamine E, J. Gerontol. 30:395 (1975).PubMedGoogle Scholar
  52. 52.
    N. Kaneta, Histochemical studies on the diencephalon of senescent rats, Tohoku J. Exp. Med. 90:249 (1966).PubMedCrossRefGoogle Scholar
  53. 53.
    H. Barden, The histochemical distribution and localization of copper, iron, neuromelanin and lysosomal enzyme activity in the brain of aging rhesus monkey and the dog, J. Neuropath. Exp. Neurol. 30:650 (1971).PubMedCrossRefGoogle Scholar
  54. 54.
    B. Hallgren and P. Sourander, The effect of age on the nonhaemin iron in the human brain, J. Neuroohem. 3:41 (1958).CrossRefGoogle Scholar
  55. 55.
    E. W. Hurst, Calcification of the brains of Equidae and bovidae, Am J. Path. 10:795 (1934).PubMedGoogle Scholar
  56. 56.
    G. Strassman, Iron and calcium deposits in the brain: Their pathologic significance, J. Neuropath. Exp. Neurol. 8:428 (1977).Google Scholar
  57. 57.
    H. Fraser, Bilateral thalamic calcification in aging mice, J. Path. Bact. 96:220 (1968).PubMedCrossRefGoogle Scholar
  58. 58.
    H. Fraser, W. Smith, and E. W. Gray, Ultrastrueturai morphology of cytoplasmic inclusions within neurons of ageing mice, J. Neurol Sci. 11:123 (1970).PubMedCrossRefGoogle Scholar
  59. 59.
    W. Hueck, Pigmnstudien, Beitrag. Path. Anat. 54:68 (1912).Google Scholar
  60. 60.
    K. R. Brizzee, J. M. Ordy, and B. Kaack, Early appearance and regional differences in intraneuronal and extraneuronal lipofuscin accumulation with age in the brain of a nonhuman primate, J. Gerontol. 29:366 (1974).PubMedGoogle Scholar
  61. 61.
    K. Nandy, Properties of neuronal lipofuscin pigment in mice, Acta Neuropath. (Beri.) 19:25 (1971).CrossRefGoogle Scholar
  62. 62.
    T. Samorajski, J. R. Keefe, and J. M. Ordy, Intracellular localization of lipofuscin age pigments in the nervous system, J. Gerontol. 19:262 (1964).Google Scholar
  63. 63.
    K. R. Brizzee, and F. A. Johnson, Depth distribution of lipofuscin pigment in cerebral cortex of rat, Acta Neuropathol. 16:205 (1970).PubMedCrossRefGoogle Scholar
  64. 64.
    P. Glees and M. Hasan, Lipofuscin in neuronal aging and diseases, Norm. Pathol. Anat. (Stuttg.) 32:1 (1933).Google Scholar
  65. 65.
    R. L. Friede, The relation of formation of lipofuscin to the distribution of oxidative enzymes in the human brain, Acta Neuropath. (Berl) 2:113 (1962).CrossRefGoogle Scholar
  66. 66.
    K. Nandy, Further studies on the effects of centrophenoxine on the lipofuscin pigment in the neurons of senile guinea pigs, J. Gerontol. 23:83 (1968).Google Scholar
  67. 67.
    S. Riga and D. Riga, Effects of centrophenoxine on lipofuscin pigments on the nervous system of old rats, Brain Res. 72:265 (1974).PubMedCrossRefGoogle Scholar
  68. 68.
    A. D. Dayan, Comparative neuropathology of ageing-studies on the brains of 47 species of vertebrates, Brain 94:31 (1971).PubMedCrossRefGoogle Scholar
  69. 69.
    B. L. Strehler, D. D. Mark, A. S. Mildvan, and M. V. Gee, Rate and magnitude of age pigment accumulation in the human myocardium, J. Gerontol. 14:430 (1959).PubMedGoogle Scholar
  70. 70.
    B. L. Strehler and C. H. Barrows, Senescence: Cell biological aspects of aging, in: “Cell Differentiation,” O. A. Schjeide and J. DeVellis, eds., Van Nostrand, New York (1970).Google Scholar
  71. 71.
    J. H. Sung, Neuroaxonal dystrophy in aging, in:“Proc. 5th Int. Congr. Neuropathol., Zurich,” Excerpta Medica Fdn, New York, Interat. Contr. Ser. No. 100 (1966).Google Scholar
  72. 72.
    J. Samorajski, R. L. Friede, and J. M. Ordy, Age differences in the ultrastructure of axons in the pyramidal tract of the mouse, J. Gerontol. 26:542 (1971).PubMedGoogle Scholar
  73. 73.
    W. Bondareff, and Y. Geinisman, Loss of synapses in the dentate gyrus of the senescent rat, Am, J. Anat. 145:129 (1976).CrossRefGoogle Scholar
  74. 74.
    Y. Geinisman and W. Bondareff, Decrease in the number of synapses in the senescent brain: A quantitative EM analysis of the dentate gyrus molecular layer in the rat, Meh. Ageing Dev. 5:11 (1976).CrossRefGoogle Scholar
  75. 75.
    B. G. Cragg, The density of synapses and neurons in normal, mentally defective and ageing human brains, Brain 98:81 (1975).PubMedCrossRefGoogle Scholar
  76. 76.
    M. L. Feldman, Degenerative changes in aging dendrites, Gerontolgist 14:34 (1974).CrossRefGoogle Scholar
  77. 77.
    D. W. Vaughan, Age-related deterioration of pyramidal cell basal dendrites in rat auditory cortex, J. Comp. Neurol. 171:601 (1977).CrossRefGoogle Scholar
  78. 78.
    M. E. Scheibel and A. B. Scheibel, Structural changes in the aging brain, in: “Aging,” vol. 1, H. Brody, D. Harman, and J. M. Ordy, eds., Raven Press, New York (1975).Google Scholar
  79. 79.
    J. Machado-Salas, M. E. Scheibel, and A. B. Scheibel, Neuronal changes in the aging mouse. Spinal cord and lower brain stem, Exp. Neurol. 54:504 (1977a).PubMedCrossRefGoogle Scholar
  80. 80.
    J. Machado-Salas, M. E. Scheibel, and A. B. Scheibel, Morphologic changes in the hypothalamus of the old mouse, Exp. Neurol. 57:102 (1977b).PubMedCrossRefGoogle Scholar
  81. 81.
    H. M. Wisniewski and R. D. Terry, Morphology of the aging brain, human and animal, Progr. Brain Res. 40:167 (1973).CrossRefGoogle Scholar
  82. 82.
    R. D. Terry and M. Wisniewski, Some structural and chemical aspects of the aging nervous system. Proc. IVth European Symposium on Basic Research in Gerontology, Scand. J. Clin. Lab. Invest. 34:(Suppl. 141) 13 (1974).Google Scholar
  83. 83.
    B. E. Tomlinson, Morphological brain changes in non-demented old people, in:“Aging of the Central Nervous System. Biological and Psychological Aspects, H. H. van Praeg and A. F. Kalverboer, eds., DeErven F. Bohm, N.V. Hoarlem (1972).Google Scholar
  84. 84.
    A. Wisniewski, A. B. Johnson, C. S. Raine, W. J. Kay, and R. D. Terry, Senile plaques and cerebral amyloidosis in aged dogs. A histochemical and ultrastructural study, Lab. Invest. 23:287 (1970).PubMedGoogle Scholar
  85. 85.
    J. E. Azcoaga, Modificaciones gliales del hipotalamo senil, Archivos de Histologia Normal y Pathologica 8:278 (1963).Google Scholar
  86. 86.
    J. E. Azcoaga, Senilidad de las neuronas de los nucleos magnocellulares del hipotalamo, Archivo de Histologia Normal y Pathologica (Buenos Aires) 9:40 (1965).Google Scholar
  87. 87.
    L. Liss and F. Gomez, The nature of senile changes of the human olfactory bulb and tract, AMA Aidi 67:167 (1958).Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • Kenneth R. Brizzee
    • 1
  • Craig Knox
    • 2
  1. 1.Department of Neurobiology Delta Regional Primate Research CenterTulane University Medical CenterCovingtonUSA
  2. 2.Department of AnatomyTulane University Medical CenterNew OrleansUSA

Personalised recommendations