Skip to main content

Population Doubling Numbers in Cells with Genetic Disorders

  • Chapter
Aging Phenomena

Abstract

The limited life spans of fibroblasts derived from human embryonic lungs were first reported by Hayflick (1). Then, the correlation between doubling potentials of cells and maximal life spans of donor animals (2) as well as the inverted correlation between doubling potentials of human fibroblasts and ages of donors were established (3). Thus, it has been thought that cells age as donors age, or cells in vitro at least mimic parts of various processes of in vivo aging, although the mechanisms of cellular aging are not yet known.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Hayflick and P. S. Moorhead, The serial cultivation of human diploid cell strains, Exp. Cell Res. 25:585 (1961).

    Article  Google Scholar 

  2. L. Hayflick, The longevity of cultured human cells, J. Amer. Geriat. Soc. 22:1 (1974).

    PubMed  CAS  Google Scholar 

  3. G. M. Martin, C. A. Sprague, and C. J. Epstein, Replicative life span of cultivated human cells, effect of donor’s age, tissue and genotype, Lab. Invest. 23:86 (1970).

    PubMed  CAS  Google Scholar 

  4. R. W. Hart and R. B. Setlow, Correlation between deoxyribonucleic acid excision-repair and life span in a number of mammalian species, Proc. Natl. Acad. Sci. USA 71:2169 (1974).

    Article  PubMed  CAS  Google Scholar 

  5. J. Epstein, J. R. Williams, and J. B. Little, Deficient DNA repair in human progeroid cells, Proc. Nat. Acad. Sci. USA 70:977 (1973).

    Article  PubMed  CAS  Google Scholar 

  6. J. Epstein, J. R. Williams, and J. B. Little, Rate of DNA repair in progeria and normal human fibroblasts, Biochem. Biophys. Res. Comm. 59:850 (1974).

    Article  PubMed  CAS  Google Scholar 

  7. S. Goldstein, Lifespan of cultured cells in progeria, Lancet 1:424 (1969).

    Article  PubMed  CAS  Google Scholar 

  8. J. D. Regan and R. B. Setlow, DNA repair in human progeroid cells, Biochem. Biophys. Res. Comm. 59:858 (1974).

    Article  PubMed  CAS  Google Scholar 

  9. R. B. Painter, J. M. Clarkson, and B. R. Young, Ultraviolet induced repair replication in aging diploid human cells (WI-38), Radiation Res. 56:560 (1973).

    Article  PubMed  CAS  Google Scholar 

  10. J. M. Clarkson and R. B. Painter, Repair of X-ray damage in aging WI-38 cells, Mutat. Res. 23:107 (1974).

    Article  PubMed  CAS  Google Scholar 

  11. P. D. Bowman, R. L. Meek, and C. W. Daniel, Decreased unscheduled DNA synthesis in nondividing aged WI-38 cells, Mech. Age. Dev. 5:251 (1976).

    Article  CAS  Google Scholar 

  12. V. Paffenholts, Correlation between DNA repair of embryonic fibroblasts and different life span of 3 inbred mouse strains, Mech. Ageing Dev. 7:131 (1978).

    Article  Google Scholar 

  13. R. W. Hart and R. B. Setlow, DNA repair in late passage human cells, Mech. Ageing Dev. 5:67 (1976).

    Article  PubMed  CAS  Google Scholar 

  14. J. E. Cleaver, DNA repair and radiation sensitivity in human (xeroderma pigmentosum) cells, Int. J. Radiat. Biol. 18:557 (1970).

    Article  CAS  Google Scholar 

  15. R. B. Setlow, J. D. Regan, J. German, and W. L. Carrier, Evidence that xeroderma pigmentosum cells do not perform the first step in the repair of ultraviolet damages in their DNA, Proc. Nat. Acad. Sci, 64:1035 (1969).

    Article  PubMed  CAS  Google Scholar 

  16. M. C. Paterson, B. P. Smith, P. H. M. Lohman, A. K. Anderson, and L. Fishman, Defective excision repair of X-ray-damaged DNA in human (ataxia telangiectasia) fibroblasts, Nature 260:444 (1976).

    Article  PubMed  CAS  Google Scholar 

  17. C. D. Lytle, Host-cell reactivation in mammalian cells. I. Survival of ultraviolet-irradiated herpes simplex virus in different cell lines, Int. J. Radiat. Biol. 19:329 (1971).

    Article  CAS  Google Scholar 

  18. H. Takebe, S. Nii, M. I. Ishii, and H. Utsumi, Comparative studies of host cell reactivation of Xeroderma pigmentosum, normal human and some other mammalian cells, Mutat. Res. 25:383 (1974).

    Article  PubMed  CAS  Google Scholar 

  19. S. Ban, O. Nikaido, and T. Sugahara, Acute and late effects of a single exposure of ionizing radition on cultured human diploid cell populations, Radiat. Res, in press.

    Google Scholar 

  20. O. Niwa and S. Nii, Applicability of microbiological technique to selection of HCR-mutants of mammalian cells, Biken J. 15:39 (1972).

    PubMed  CAS  Google Scholar 

  21. Y. Fujiwara, T. Higashikawa, and M. Tatsumi, A retarded rate of DNA replication and normal level of DNA repair in Werner’s syndrome fibroblasts in culture, J. Cell. Physiol. 92:365 (1977).

    Article  PubMed  CAS  Google Scholar 

  22. S. Goldstein, The role of DNA repair in aging of cultured fibroblasts from xeroderma pigmentosum and normals, Proc. Soc. Exp. Biol. Med. 137:730 (1971).

    CAS  Google Scholar 

  23. R. Holliday, L. I. Huschtscha, G. M. Tarrant, and T. B. L. Kirkwood, Testing the commitment theory of cellular aging, Science 198:366 (1977).

    Article  PubMed  CAS  Google Scholar 

  24. K. Tanaka, M. Sekiguchi, and Y. Okada, Restoration of ultraviolet-induced unscheduled DNA synthesis of xeroderma pigmentosum cells by the concomitant treatment with Bacteriophage T4 endonuclease V and HVJ (Sendai virus), Proc. Nat. Acad. Sci. USA 72:4071 (1975).

    Article  PubMed  CAS  Google Scholar 

  25. A. M. Rauth, Effects of ultraviolet light on mammalian cells in culture, in:“Current Topics in Radiation Research,” Vol. 6, M. Evert and A. Howard, eds., North-Holland, Amsterdam (1970).

    Google Scholar 

  26. V. J. Cristofalo and B. B. Sharf, Cellular senescence and DNA synthesis. Thymidine incorporation as a measure of population age in human diploid cells, Exptl. Cell Res. 76:419 (1973).

    Article  PubMed  CAS  Google Scholar 

  27. E. Schneider and Y. Mitsui, The relationship between in vitro cellular aging and in vivo human age, Proc. Nat. Acad. Sci. USA 73:3584 (1976).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Plenum Press, New York

About this chapter

Cite this chapter

Nikaido, O., Ban, S., Sugahara, T. (1980). Population Doubling Numbers in Cells with Genetic Disorders. In: Oota, K., Iriki, M., Makinodan, T., Baker, L.S. (eds) Aging Phenomena. Advances in Experimental Medicine and Biology, vol 129. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3734-8_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3734-8_25

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3736-2

  • Online ISBN: 978-1-4684-3734-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics