Skip to main content

Cells, Signals, and Receptors: The Role of Physiological Autoantibodies in Maintaining Homeostasis

  • Chapter
Book cover Aging Phenomena

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 129))

Abstract

Macrophages can distinguish mature “self” from senescent “self” cells. This is reflected by their ability to phagocytize cells which have reached the end of their functional lifespan, while sparing the mature cells. For example, mononuclear phagocytes of the liver and spleen remove syngeneic lymphocytes as well as antibody-coated red blood cells (RBC) (1,2,3). Erythrophagocytosis also occurs in lymph nodes (4). Studies on the fate of aged RBC indicate that they are eliminated intracellularly by mononuclear phagocytes rather than by osmotic lysis both in vitro and in situ (5,6,7,8,9). In this way, mononuclear phagocytes may perform an essential homeostatic role by permitting the more efficient mature cells to carry out their vital functions without hindrance from the less efficient senescent cells, or by preventing pathological reactions which could arise as a consequence of senescent cells dying and decaying within the organism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. A. Klauser, L. J. Hirsch, P. F. Leblond, J. K. Chamberlain, M. R. Klemperer, and G. B. Segel, Contrasting splenic mechanisms in the blood clearance of red blood cells and colloidal particles, Blood 46:965 (1975).

    Google Scholar 

  2. V. Silobcic, B. Vitale, M. Susnjic, V. Tomazic, and I. Basic, Acute graft-versus-host reaction in mice. 3. Organ distribution of injected 51 chromium labeled lymphocytes, Exp. Hemat. 4:103 (1976).

    Google Scholar 

  3. M.M.B. Kay, Mechanism of removal of senescent cells by human macrophages in situ, Proc. Natl. Acad. Sci. USA 72:3521 (1975).

    Article  PubMed  CAS  Google Scholar 

  4. F. Smith, Erythrophagocytosis in human lymph-glands, J. Path. Bact. 78:383 (1958).

    Article  Google Scholar 

  5. C. R. Jenkin and K. Karthigasu, Elimination hepatiques des erythrocytes age et alteres chez le rat, Compt. Rend. Soc. Biol. 161:1006 (1967).

    Google Scholar 

  6. T. Morita, and E. H. Perkins, A simple quantitative method to assess the in vitro engulfing and degradative potentials of mouse peritoneal phagocytic cells. J. Reticuloendothel. Soc. 2:406 (1965).

    PubMed  CAS  Google Scholar 

  7. A. E. Stuart, and R. A. Cumming, A biological test for injury to the human red cell, Vox Sang. 13:270 (1967).

    Article  PubMed  CAS  Google Scholar 

  8. D. S. Nelson, Macrophages in auto-immunity, the disposal of effete cells and chronic inflammation, in:“Macrophages and Immunity,” Amer. Elsevier Pub. Co., New York (1969)

    Google Scholar 

  9. D. Gemsa, C. H. Woo, H. H. Fudenberg, and R. Schmid, Erythrocyte catabolism by macrophages in vitro. The effect of hydrocortisone on erythrophagocytosis and on the indication of heme oxygenase, J. Clin. Lab. Invest. 52:812 (1973).

    Article  CAS  Google Scholar 

  10. M. M. B. Kay, Mechanism of macrophage recognition of senescent red cells, Gerontologist 14(5):33 (1974).

    Google Scholar 

  11. S. Kochwa and R. Rosenfield, Immunochemical studies of the Rh system. I. Isolation and characterization of antibodies, J. Immunol. 92:682 (1964).

    PubMed  CAS  Google Scholar 

  12. A. Nisonoff, F. C. Wissler, L. N. Lipman, and D. L. Woernley, Separation of univalent fragments from the bivalent rabbit antibody molecule by reduction of disufide bonds, Arch. Biochem. Biophys. 89:230 (1960).

    Article  PubMed  CAS  Google Scholar 

  13. J. J. Cebra, D. Guval, H. I. Silman, and E. Katchalski, A two-stage cleavage of rabbit y-globulin by a water-insoluble papain preparation followed by cysteine, J. Biol. Chem. 236:1720 (1961).

    PubMed  CAS  Google Scholar 

  14. C. L. Cambiasco, A. Goffinet, J.-P. Vaerman, and J. F. Feremans, Glutaraldehyde-activated aminohexyl-derivative of Sepharose 4B as a new versatile immunoabsorbent, Immunochemistry 12:272 (1975).

    Google Scholar 

  15. J. Mueller, R. G. del Brun, H. Buerki, H.-U. Keller, M. W. Hess, and H. Cottier, Non-specific acid esterase activity: A criterion for differentiation in mouse lymph nodes, Eur. J. Immunol. 5:270 (1975).

    Article  PubMed  CAS  Google Scholar 

  16. M. M. B. Kay, Kupffer cells: Homeostatic functions during aging, in:“Liver and Ageing,” D. Platt, ed., F.K. Schattauer Verlag, Stuttgart (1977).

    Google Scholar 

  17. J. R. Murphy, Influence of temperature and method of centrifugation on the separation of erythrocytes, J. Lab. Clin. Med. 82:334 (1973).

    PubMed  CAS  Google Scholar 

  18. E. R. Borun, M. G. Figueroa, and I. M. Perry, The distribution of Fe-tagged human erythrocytes in centrifuged specimens as a function of cell age, J. Clin. Invest. 36:676 (1957).

    Article  PubMed  CAS  Google Scholar 

  19. M. M. B. Kay, Multiple labeling technique used for kinetic studies of activated human B lymphocytes, Nature 245:425 (1975).

    Google Scholar 

  20. M. M. B. Kay, Multiple labeling technique for scanning immunoelectron microscopy, in:“Principles and Techniques of Scanning Electron Microscopy,” M.A. Hayat, ed., Van Nostrand and Reinhold Co., New York, (1978).

    Google Scholar 

  21. M. M. B. Kay, High resolution scanning electron microscopy and its application to research on immunity and aging, in:“Immunity and Aging,” T. Makinodan and E. Yunis, eds., Plenum Press, New York (1978).

    Google Scholar 

  22. T. Steck, The organization of proteins in the human red blood cell membrane, J. Cell Biol. 62:1 (1974).

    Article  PubMed  CAS  Google Scholar 

  23. C. J. A. van den Hamer, G. Morell, I. H. Scheinberg, J. Hickman, and G. Ashwell, Physical and chemical studies on ceruloplasmin. IX. The role of glactosyl residues in the clearance of ceruloplasmin from the circulation. J. Biol. Chem. 245:4397 (1970).

    Google Scholar 

  24. A. G. Morell, G. Gregoriadis, I. H. Scheinberg, J. Hickman, and G. Ashwell, The role of sialic acid in determining the survival of glycoproteins in the circulation, J. Biol. Chem. 246:1461 (1971).

    PubMed  CAS  Google Scholar 

  25. W. E. Pricer Jr. and G. Ashwell, The binding of desialylated glycoproteins by plasma membranes of rat liver, J. Biol. Chem. 246:4825 (1971).

    PubMed  CAS  Google Scholar 

  26. M. M. B. Kay, Role of physiologic autoantibodies in the removal of senescent human red cells, J. Supra. Mol. Stuct. 9:555 (1978).

    Article  CAS  Google Scholar 

  27. H. U. Lutz, A. von Daniken, G. Semenza, and T. H. Bachi, Glycophorin-enriched vesicles obtained by a selective extraction of human erythrocyte membranes with a non-ionic detergent, Biochim. Biophys. Acta., in press.

    Google Scholar 

  28. E. D. Weinberg, Iron and susceptibility to infectious disease, Science 148:952 (1974).

    Article  Google Scholar 

  29. F. M. Burnet, “Immunological Surveillance,” Pergammon Press, Oxford, England (1970).

    Google Scholar 

  30. H. H. Fudenberg, Genetically determined immune deficiency as the predisposing cause of “autoimmunity” and lyphoid neoplasia, Amer. J. Med. 51:295 (1971).

    Article  PubMed  CAS  Google Scholar 

  31. M. E. Gershwin and A. D. Steinberg, Suppression of autoimmune hemolytic anemia in New Zealand (NZB) mice by syngeneic young thymocytes, Clin. Immunol. Immunopath. 4:38 (1975).

    Article  CAS  Google Scholar 

  32. Y. Marikovsky, D. Danon, and A. Katchalsky, Agglutination by polylysine of young and old red blood cells, Biochim. Biophys. Acta 124:154 (1966).

    Article  PubMed  CAS  Google Scholar 

  33. E. Skutelsky, Y. Marikovsky, and D. Danon, Immunoferritin analysis of membrane antigen density: A. Young and old human blood cells. B. Developing erythroid cells and extruded erythroid nuclei, Eur. J. Immunol. 4:512 (1974).

    Article  PubMed  CAS  Google Scholar 

  34. G. V. F. Seaman, R. J. Knox, F. J. Nordt, and D. H. Regan, Red cell aging. I. Surface charge density and sialic acid content of density-fractionated human erythrocytes, Blood 50:1001 (1977).

    PubMed  CAS  Google Scholar 

  35. S. J. Luner, D. Szklarek, R. J. Knox, G. V. H. Seaman, J. Y. Josefowicz, and B. R. Ware, Red cell charge is not a function of cell age, Nature 269:719 (1977).

    Article  PubMed  CAS  Google Scholar 

  36. D. Aminoff, W. F. V. Bruegge, W. C. Bell, K. Sarpolis, and R. Williams, Role of sialic acid in survival of erythrocytes in the circulation: Interaction of neuraminidase-treated and untreated erythrocytes with spleen and liver and the cellular level, Proc. Natl. Acad. Sci. USA 74:1521 (1977).

    Article  PubMed  CAS  Google Scholar 

  37. A. F. LoBuglio, R. S. Cotran, and J. H. Jandl, Red cells coated with immunoglobulin G: Binding and sphereing by mononuclear cells in man, Science 158:1582 (1967).

    Article  PubMed  CAS  Google Scholar 

  38. J. Michl and S. C. Silverstein, Role of macrophage receptors in the ingestion phase of phagocytosis, in:“Birth Defects: Original Article Series,” 14(2), R.A. Lerner and D. Bergsma, eds., The National Foundation-March of Dimes, White Plains, New York (1978).

    Google Scholar 

  39. J. M. Janicik, R. Schauer, K. H. Andres, and M. von During, Sequestration of neuraminidase-treated erythrocytes. Studies on its topographic, morphologic and immunologic aspects, Cell. Tiss. Res. 186:209 (1978).

    CAS  Google Scholar 

  40. J. R. Durocher, J. Supramol. Struct. Suppl. 2:199 (1978).

    Google Scholar 

  41. C. J. Steer, Kupffer cells and glycoproteins: Does a recognition phenomenon exist? Bull. Kupffer Cell Fdn. I:26 (1978).

    Google Scholar 

  42. A. Baxter and J. G. Beeley Surface carbohydrates of aged erythrocytes, Biochem. Biophys. Res. Commun. 83:466 (1978).

    Article  PubMed  CAS  Google Scholar 

  43. H. U. Lutz and J. Fehr, Total sialic acid content in glycophorin remains unchanged during senescence of human red cells, submitted.

    Google Scholar 

  44. G. Perret, D. Bladier, L. Gattegno, and P. Cornillot, The role of T-agglutinin in the disappearance of erythrocytes artificially aged by desialylation, Mech. Ageing Dev., in press.

    Google Scholar 

  45. W. J. Martin and S. E. Martin, Thymus reactive IgM autoantibodies in normal mouse sera, Nature 254:716 (1975).

    Article  PubMed  CAS  Google Scholar 

  46. J. C. Roder, D. A. Bell, and S. K. Singhal, Regulation of the autoimmune plaque-forming cell response to single-strand DNA (sDNA) in vitro, J. Immunol. 121:38 (1978).

    PubMed  CAS  Google Scholar 

  47. D. W. Dresser and A. M. Popham, Induction of IgM anti-(bovine)-IgG response in mice by bacterial lipopolysaccharide, Nature 264:552 (1976).

    Article  PubMed  CAS  Google Scholar 

  48. D. W. Dresser, Most IgM-producing cells in the mouse secrete auto-antibodies (rheumatoid factor), Nature 274:480 (1978).

    Article  PubMed  CAS  Google Scholar 

  49. A. E. Bussard, M.-A. Vinit, and J. M. Pages, Immunochemical characterization of the autoantibodies produced by mouse peritoneal cells in culture, Immunochemistry 14:1 (1977).

    Article  PubMed  CAS  Google Scholar 

  50. E. J. Stelle and A. J. Cunningham, High proportion of IgG producing cells making autoantibody in normal mice, Nature 274:483 (1978).

    Article  Google Scholar 

  51. G. M. Shearer, Cell-mediated cytotoxicity to trinitrophenyl-modified syngeneic lymphocytes, Eur. J. Immunol. 4:527 (1974).

    Article  PubMed  CAS  Google Scholar 

  52. P. Levine, Self-nonself concept for cancer and diseases previously known as “autoimmune” diseases, Proc. Natl. Acad. Sci. USA 75:5697 (1978).

    Article  PubMed  CAS  Google Scholar 

  53. D. C. Swartzenbruber, Phagocytized plasma cells in mouse spleen observed by light and electron microscopy, Blood 24:432 (1964).

    Google Scholar 

  54. N. K. Jerne, A. A. Nordin, and C. Henry, The agar plaque technique for recognizing antibody-producing cells, in:“Cell-Bound Antibodies,” D.B. Amos and H. Koprowski, eds., Wistar Press, Philadelphia (1963).

    Google Scholar 

  55. J. C. Schooley, Autoradiographic observations of plasma cell formation, J. Immunol. 86:331 (1961).

    PubMed  CAS  Google Scholar 

  56. C. G. Congdon and T. Makinodan, Splenic white pulp after antigen injection: Relation of time of serum antibody production, Am. J. Path. 39:697 (1961).

    PubMed  CAS  Google Scholar 

  57. D. H. Solomon, The nature of Graves’ hyperthyroidism, in:“Autoimmune thyroid diseases-Graves’ and Hashimoto’s,” J. Brown, moderator, Ann. Intern. Med. 88:379 (1978).

    Google Scholar 

  58. M. C. Raff, Two distinct populations of peripheral lymphocytes in mice distinguishable by immunofluorescence, Immunology 19:637 (1970).

    PubMed  CAS  Google Scholar 

  59. D. J. Scribner, H. L. Weiner, and J. W. Moorhead, Anti-immunoglobulin stimulation of murine lymphocytes. V. Age-related decline in Fc receptor-mediated immunoregulation, J. Immunol. 121:377 (1978).

    PubMed  CAS  Google Scholar 

  60. H. N. Eisen, “Immunology,” Harper and Row Publishers, Inc., Hagerstown, Md (1974).

    Google Scholar 

  61. M. M. B. Kay, Hodgkin’s Disease: A war between T lymphocytes and transformed macrophages? in:“Lymphocytes and Macrophages in Cancer Patients, Vol. 1, Recent Results in Cancer Research,” G. Mathe, I. Florentn, and M.-C. Simmler, eds., Springer-Verlag, New York (1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Plenum Press, New York

About this chapter

Cite this chapter

Kay, M.M.B. (1980). Cells, Signals, and Receptors: The Role of Physiological Autoantibodies in Maintaining Homeostasis. In: Oota, K., Iriki, M., Makinodan, T., Baker, L.S. (eds) Aging Phenomena. Advances in Experimental Medicine and Biology, vol 129. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3734-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3734-8_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3736-2

  • Online ISBN: 978-1-4684-3734-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics