Cells, Signals, and Receptors: The Role of Physiological Autoantibodies in Maintaining Homeostasis

  • Marguerite M. B. Kay
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 129)


Macrophages can distinguish mature “self” from senescent “self” cells. This is reflected by their ability to phagocytize cells which have reached the end of their functional lifespan, while sparing the mature cells. For example, mononuclear phagocytes of the liver and spleen remove syngeneic lymphocytes as well as antibody-coated red blood cells (RBC) (1,2,3). Erythrophagocytosis also occurs in lymph nodes (4). Studies on the fate of aged RBC indicate that they are eliminated intracellularly by mononuclear phagocytes rather than by osmotic lysis both in vitro and in situ (5,6,7,8,9). In this way, mononuclear phagocytes may perform an essential homeostatic role by permitting the more efficient mature cells to carry out their vital functions without hindrance from the less efficient senescent cells, or by preventing pathological reactions which could arise as a consequence of senescent cells dying and decaying within the organism.


Sialic Acid Mononuclear Phagocyte Senescent Cell Percent Phagocytosis Nuclear Phagocyte 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. A. Klauser, L. J. Hirsch, P. F. Leblond, J. K. Chamberlain, M. R. Klemperer, and G. B. Segel, Contrasting splenic mechanisms in the blood clearance of red blood cells and colloidal particles, Blood 46:965 (1975).Google Scholar
  2. 2.
    V. Silobcic, B. Vitale, M. Susnjic, V. Tomazic, and I. Basic, Acute graft-versus-host reaction in mice. 3. Organ distribution of injected 51 chromium labeled lymphocytes, Exp. Hemat. 4:103 (1976).Google Scholar
  3. 3.
    M.M.B. Kay, Mechanism of removal of senescent cells by human macrophages in situ, Proc. Natl. Acad. Sci. USA 72:3521 (1975).PubMedCrossRefGoogle Scholar
  4. 4.
    F. Smith, Erythrophagocytosis in human lymph-glands, J. Path. Bact. 78:383 (1958).CrossRefGoogle Scholar
  5. 5.
    C. R. Jenkin and K. Karthigasu, Elimination hepatiques des erythrocytes age et alteres chez le rat, Compt. Rend. Soc. Biol. 161:1006 (1967).Google Scholar
  6. 6.
    T. Morita, and E. H. Perkins, A simple quantitative method to assess the in vitro engulfing and degradative potentials of mouse peritoneal phagocytic cells. J. Reticuloendothel. Soc. 2:406 (1965).PubMedGoogle Scholar
  7. 7.
    A. E. Stuart, and R. A. Cumming, A biological test for injury to the human red cell, Vox Sang. 13:270 (1967).PubMedCrossRefGoogle Scholar
  8. 8.
    D. S. Nelson, Macrophages in auto-immunity, the disposal of effete cells and chronic inflammation, in:“Macrophages and Immunity,” Amer. Elsevier Pub. Co., New York (1969)Google Scholar
  9. 9.
    D. Gemsa, C. H. Woo, H. H. Fudenberg, and R. Schmid, Erythrocyte catabolism by macrophages in vitro. The effect of hydrocortisone on erythrophagocytosis and on the indication of heme oxygenase, J. Clin. Lab. Invest. 52:812 (1973).CrossRefGoogle Scholar
  10. 10.
    M. M. B. Kay, Mechanism of macrophage recognition of senescent red cells, Gerontologist 14(5):33 (1974).Google Scholar
  11. 11.
    S. Kochwa and R. Rosenfield, Immunochemical studies of the Rh system. I. Isolation and characterization of antibodies, J. Immunol. 92:682 (1964).PubMedGoogle Scholar
  12. 12.
    A. Nisonoff, F. C. Wissler, L. N. Lipman, and D. L. Woernley, Separation of univalent fragments from the bivalent rabbit antibody molecule by reduction of disufide bonds, Arch. Biochem. Biophys. 89:230 (1960).PubMedCrossRefGoogle Scholar
  13. 13.
    J. J. Cebra, D. Guval, H. I. Silman, and E. Katchalski, A two-stage cleavage of rabbit y-globulin by a water-insoluble papain preparation followed by cysteine, J. Biol. Chem. 236:1720 (1961).PubMedGoogle Scholar
  14. 14.
    C. L. Cambiasco, A. Goffinet, J.-P. Vaerman, and J. F. Feremans, Glutaraldehyde-activated aminohexyl-derivative of Sepharose 4B as a new versatile immunoabsorbent, Immunochemistry 12:272 (1975).Google Scholar
  15. 15.
    J. Mueller, R. G. del Brun, H. Buerki, H.-U. Keller, M. W. Hess, and H. Cottier, Non-specific acid esterase activity: A criterion for differentiation in mouse lymph nodes, Eur. J. Immunol. 5:270 (1975).PubMedCrossRefGoogle Scholar
  16. 16.
    M. M. B. Kay, Kupffer cells: Homeostatic functions during aging, in:“Liver and Ageing,” D. Platt, ed., F.K. Schattauer Verlag, Stuttgart (1977).Google Scholar
  17. 17.
    J. R. Murphy, Influence of temperature and method of centrifugation on the separation of erythrocytes, J. Lab. Clin. Med. 82:334 (1973).PubMedGoogle Scholar
  18. 18.
    E. R. Borun, M. G. Figueroa, and I. M. Perry, The distribution of Fe-tagged human erythrocytes in centrifuged specimens as a function of cell age, J. Clin. Invest. 36:676 (1957).PubMedCrossRefGoogle Scholar
  19. 19.
    M. M. B. Kay, Multiple labeling technique used for kinetic studies of activated human B lymphocytes, Nature 245:425 (1975).Google Scholar
  20. 20.
    M. M. B. Kay, Multiple labeling technique for scanning immunoelectron microscopy, in:“Principles and Techniques of Scanning Electron Microscopy,” M.A. Hayat, ed., Van Nostrand and Reinhold Co., New York, (1978).Google Scholar
  21. 21.
    M. M. B. Kay, High resolution scanning electron microscopy and its application to research on immunity and aging, in:“Immunity and Aging,” T. Makinodan and E. Yunis, eds., Plenum Press, New York (1978).Google Scholar
  22. 22.
    T. Steck, The organization of proteins in the human red blood cell membrane, J. Cell Biol. 62:1 (1974).PubMedCrossRefGoogle Scholar
  23. 23.
    C. J. A. van den Hamer, G. Morell, I. H. Scheinberg, J. Hickman, and G. Ashwell, Physical and chemical studies on ceruloplasmin. IX. The role of glactosyl residues in the clearance of ceruloplasmin from the circulation. J. Biol. Chem. 245:4397 (1970).Google Scholar
  24. 24.
    A. G. Morell, G. Gregoriadis, I. H. Scheinberg, J. Hickman, and G. Ashwell, The role of sialic acid in determining the survival of glycoproteins in the circulation, J. Biol. Chem. 246:1461 (1971).PubMedGoogle Scholar
  25. 25.
    W. E. Pricer Jr. and G. Ashwell, The binding of desialylated glycoproteins by plasma membranes of rat liver, J. Biol. Chem. 246:4825 (1971).PubMedGoogle Scholar
  26. 26.
    M. M. B. Kay, Role of physiologic autoantibodies in the removal of senescent human red cells, J. Supra. Mol. Stuct. 9:555 (1978).CrossRefGoogle Scholar
  27. 27.
    H. U. Lutz, A. von Daniken, G. Semenza, and T. H. Bachi, Glycophorin-enriched vesicles obtained by a selective extraction of human erythrocyte membranes with a non-ionic detergent, Biochim. Biophys. Acta., in press.Google Scholar
  28. 28.
    E. D. Weinberg, Iron and susceptibility to infectious disease, Science 148:952 (1974).CrossRefGoogle Scholar
  29. 29.
    F. M. Burnet, “Immunological Surveillance,” Pergammon Press, Oxford, England (1970).Google Scholar
  30. 30.
    H. H. Fudenberg, Genetically determined immune deficiency as the predisposing cause of “autoimmunity” and lyphoid neoplasia, Amer. J. Med. 51:295 (1971).PubMedCrossRefGoogle Scholar
  31. 31.
    M. E. Gershwin and A. D. Steinberg, Suppression of autoimmune hemolytic anemia in New Zealand (NZB) mice by syngeneic young thymocytes, Clin. Immunol. Immunopath. 4:38 (1975).CrossRefGoogle Scholar
  32. 32.
    Y. Marikovsky, D. Danon, and A. Katchalsky, Agglutination by polylysine of young and old red blood cells, Biochim. Biophys. Acta 124:154 (1966).PubMedCrossRefGoogle Scholar
  33. 33.
    E. Skutelsky, Y. Marikovsky, and D. Danon, Immunoferritin analysis of membrane antigen density: A. Young and old human blood cells. B. Developing erythroid cells and extruded erythroid nuclei, Eur. J. Immunol. 4:512 (1974).PubMedCrossRefGoogle Scholar
  34. 34.
    G. V. F. Seaman, R. J. Knox, F. J. Nordt, and D. H. Regan, Red cell aging. I. Surface charge density and sialic acid content of density-fractionated human erythrocytes, Blood 50:1001 (1977).PubMedGoogle Scholar
  35. 35.
    S. J. Luner, D. Szklarek, R. J. Knox, G. V. H. Seaman, J. Y. Josefowicz, and B. R. Ware, Red cell charge is not a function of cell age, Nature 269:719 (1977).PubMedCrossRefGoogle Scholar
  36. 36.
    D. Aminoff, W. F. V. Bruegge, W. C. Bell, K. Sarpolis, and R. Williams, Role of sialic acid in survival of erythrocytes in the circulation: Interaction of neuraminidase-treated and untreated erythrocytes with spleen and liver and the cellular level, Proc. Natl. Acad. Sci. USA 74:1521 (1977).PubMedCrossRefGoogle Scholar
  37. 37.
    A. F. LoBuglio, R. S. Cotran, and J. H. Jandl, Red cells coated with immunoglobulin G: Binding and sphereing by mononuclear cells in man, Science 158:1582 (1967).PubMedCrossRefGoogle Scholar
  38. 38.
    J. Michl and S. C. Silverstein, Role of macrophage receptors in the ingestion phase of phagocytosis, in:“Birth Defects: Original Article Series,” 14(2), R.A. Lerner and D. Bergsma, eds., The National Foundation-March of Dimes, White Plains, New York (1978).Google Scholar
  39. 39.
    J. M. Janicik, R. Schauer, K. H. Andres, and M. von During, Sequestration of neuraminidase-treated erythrocytes. Studies on its topographic, morphologic and immunologic aspects, Cell. Tiss. Res. 186:209 (1978).Google Scholar
  40. 40.
    J. R. Durocher, J. Supramol. Struct. Suppl. 2:199 (1978).Google Scholar
  41. 41.
    C. J. Steer, Kupffer cells and glycoproteins: Does a recognition phenomenon exist? Bull. Kupffer Cell Fdn. I:26 (1978).Google Scholar
  42. 42.
    A. Baxter and J. G. Beeley Surface carbohydrates of aged erythrocytes, Biochem. Biophys. Res. Commun. 83:466 (1978).PubMedCrossRefGoogle Scholar
  43. 43.
    H. U. Lutz and J. Fehr, Total sialic acid content in glycophorin remains unchanged during senescence of human red cells, submitted.Google Scholar
  44. 44.
    G. Perret, D. Bladier, L. Gattegno, and P. Cornillot, The role of T-agglutinin in the disappearance of erythrocytes artificially aged by desialylation, Mech. Ageing Dev., in press.Google Scholar
  45. 45.
    W. J. Martin and S. E. Martin, Thymus reactive IgM autoantibodies in normal mouse sera, Nature 254:716 (1975).PubMedCrossRefGoogle Scholar
  46. 46.
    J. C. Roder, D. A. Bell, and S. K. Singhal, Regulation of the autoimmune plaque-forming cell response to single-strand DNA (sDNA) in vitro, J. Immunol. 121:38 (1978).PubMedGoogle Scholar
  47. 47.
    D. W. Dresser and A. M. Popham, Induction of IgM anti-(bovine)-IgG response in mice by bacterial lipopolysaccharide, Nature 264:552 (1976).PubMedCrossRefGoogle Scholar
  48. 48.
    D. W. Dresser, Most IgM-producing cells in the mouse secrete auto-antibodies (rheumatoid factor), Nature 274:480 (1978).PubMedCrossRefGoogle Scholar
  49. 49.
    A. E. Bussard, M.-A. Vinit, and J. M. Pages, Immunochemical characterization of the autoantibodies produced by mouse peritoneal cells in culture, Immunochemistry 14:1 (1977).PubMedCrossRefGoogle Scholar
  50. 50.
    E. J. Stelle and A. J. Cunningham, High proportion of IgG producing cells making autoantibody in normal mice, Nature 274:483 (1978).CrossRefGoogle Scholar
  51. 51.
    G. M. Shearer, Cell-mediated cytotoxicity to trinitrophenyl-modified syngeneic lymphocytes, Eur. J. Immunol. 4:527 (1974).PubMedCrossRefGoogle Scholar
  52. 52.
    P. Levine, Self-nonself concept for cancer and diseases previously known as “autoimmune” diseases, Proc. Natl. Acad. Sci. USA 75:5697 (1978).PubMedCrossRefGoogle Scholar
  53. 53.
    D. C. Swartzenbruber, Phagocytized plasma cells in mouse spleen observed by light and electron microscopy, Blood 24:432 (1964).Google Scholar
  54. 54.
    N. K. Jerne, A. A. Nordin, and C. Henry, The agar plaque technique for recognizing antibody-producing cells, in:“Cell-Bound Antibodies,” D.B. Amos and H. Koprowski, eds., Wistar Press, Philadelphia (1963).Google Scholar
  55. 55.
    J. C. Schooley, Autoradiographic observations of plasma cell formation, J. Immunol. 86:331 (1961).PubMedGoogle Scholar
  56. 56.
    C. G. Congdon and T. Makinodan, Splenic white pulp after antigen injection: Relation of time of serum antibody production, Am. J. Path. 39:697 (1961).PubMedGoogle Scholar
  57. 58.
    D. H. Solomon, The nature of Graves’ hyperthyroidism, in:“Autoimmune thyroid diseases-Graves’ and Hashimoto’s,” J. Brown, moderator, Ann. Intern. Med. 88:379 (1978).Google Scholar
  58. 59.
    M. C. Raff, Two distinct populations of peripheral lymphocytes in mice distinguishable by immunofluorescence, Immunology 19:637 (1970).PubMedGoogle Scholar
  59. 60.
    D. J. Scribner, H. L. Weiner, and J. W. Moorhead, Anti-immunoglobulin stimulation of murine lymphocytes. V. Age-related decline in Fc receptor-mediated immunoregulation, J. Immunol. 121:377 (1978).PubMedGoogle Scholar
  60. 61.
    H. N. Eisen, “Immunology,” Harper and Row Publishers, Inc., Hagerstown, Md (1974).Google Scholar
  61. 62.
    M. M. B. Kay, Hodgkin’s Disease: A war between T lymphocytes and transformed macrophages? in:“Lymphocytes and Macrophages in Cancer Patients, Vol. 1, Recent Results in Cancer Research,” G. Mathe, I. Florentn, and M.-C. Simmler, eds., Springer-Verlag, New York (1976).Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • Marguerite M. B. Kay
    • 1
  1. 1.Laboratory of Molecular and Clinical Immunology Geriatric Research, Education and Clinical Center (691/11G)V.A. Wadsworth Medical CenterLos AngelesUSA

Personalised recommendations