The Application of Ab Initio Quantum Chemistry to Problems of Current Interest Raised by Experimentalists

  • P. S. Bagus
  • B. Liu
  • A. D. McLean
  • M. Yoshimine
Part of the The IBM Research Symposia Series book series (IRSS)


Rigorous methods of quantum chemistry can now be used to address problems raised by experimentalists working in a variety of areas from free radical spectroscopy to surface chemistry. The focus of this paper will be on the kinds of results that can be obtained rather than on details of the computations. This will be achieved by presenting the results of a few representative studies performed recently at the San Jose Laboratory. We shall consider first examples that belong to the area traditionally associated with quantum chemistry, the spectroscopy of small molecules. The van der Waals interactions in the dimers He2, Be2, and Mg2 will be discussed. It will be shown that with a suitable model the weak bonding in these systems can be treated with rather high accuracy. The behavior of the dipole moment curves (surfaces) for HCN and CO will be discussed. These curves are difficult to determine with infrared spectroscopy particularly for the portions relevant for highly excited vibrational levels. For CO, the calculations have helped to determine its density in the solar atmosphere. Although these first two examples deal with traditional areas of quantum chemistry; they are particularly important as cases in which definitive results are very likely to be obtained more easily from theoretical than from experimental data. The study of the electronic excitations in the peroxyl radicals, HO2 and CH3O2, considered next show the kind of interplay now possible between theory and experiment. For HO2, the theory was able to confirm the assignments made for the near infrared absorption spectrum. For CH3O2, careful theory, albeit at a simple level of approximation, made possible the interpretation of the anomolous behavior of satellite bands of the main vibronic transitions. The kinds of properties discussed in these examples can also be obtained for larger systems; the Wolff rearrangement discussed in another paper is an excellent case of this. The final example will discuss an application to what is, in principle, an even larger system, the interaction of an atom with a solid surface. The interactions of H, F, and C1 with the (111) surface of Si, modeled by molecular clusters of up to ten Si atoms, will be discussed and shown to lead to an explanation for the greater reactivity of F than Cl with a Si surface.


Quantum Chemistry Double Zeta Satellite Band Dipole Moment Function Electronic Transition Probability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. A. Hylleraas, Z. F. Phys. 65, 209 (1930).CrossRefGoogle Scholar
  2. 2.
    H. M. James and A. S. Coolidge, J. Chem. Phys. 1, 825 (1933)CrossRefGoogle Scholar
  3. 2.
    H. M. James and A. S. Coolidge, J. Chem. Phys. 3, 129 (1935).CrossRefGoogle Scholar
  4. 3.
    H. F. Schaefer III, “The Electronic Structure of Atoms and Molecules,” (Addison-Wesley, Reading, MA, 1972).Google Scholar
  5. 4.
    W. G. Richards, T. E. H. Walker, and R. K. Hinkley, “A Bibliography of Ab Initio Molecular Wave Functions,” (Clarendon Press, Oxford, 1971)Google Scholar
  6. 4a.
    W. G. Richards, T. E. H. Walker, L. Farnell, and P. R. Scott, “Bibliography of Ab Initio Molecular Wave Functions. Supplement for 1970–1973,” (Clarendon Press, Oxford, 1974).Google Scholar
  7. 5.
    G. Richards, Nature 278, 507 (1979).CrossRefGoogle Scholar
  8. 6.
    We wish, in particular, to acknowledge, Prof. J. Almlöf, Dr. M. Dupuis, and Prof. J. Hinze.Google Scholar
  9. 7.
    C. L. Pekeris, Phys. Rev. 112, 1649 (1958)CrossRefGoogle Scholar
  10. 7a.
    C. L. Pekeris, Phys. Rev. 115, 1216 (1959)CrossRefGoogle Scholar
  11. 7b.
    C. L. Pekeris, Phys. Rev. 126, 1470 (1962).CrossRefGoogle Scholar
  12. 8.
    W. Kolos and L. Wolniewicz, J. Chem. Phys. 41, 3663 (1964)CrossRefGoogle Scholar
  13. 8a.
    W. Kolos and L. Wolniewicz, J. Chem. Phys. 43, 2429 (1965).CrossRefGoogle Scholar
  14. 9.
    P. S. Bagus, B. Liu, A. D. McLean, and M. Yoshimine, “Application of Wave Mechanics to the Electronic Structure of Molecules Through Configuration Interaction,” in “Wave Mechanics: The First Fifty Years,” ed. W. C. Price, S. S. Chissick, and T. Ravensdale (Butterworths, London, 1973) p. 99.Google Scholar
  15. 10.
    B. Liu and A. D. McLean, J. Chem. Phys. 59, 4557 (1974).CrossRefGoogle Scholar
  16. 11.
    B. Liu and A. D. McLean, to be published.Google Scholar
  17. 12.
    A. L. J. Burgmans, J. M. Farrar, and Y. T. Lee, J. Chem. Phys. 64, 1345 (1976).CrossRefGoogle Scholar
  18. 13.
    N. Sabelli and J. Hinze, J. Chem. Phys. 50, 684 (1969).CrossRefGoogle Scholar
  19. 14.
    C. F. Bunge, Theoret. Chim. Acta (Berl.) 16, 126 (1970).CrossRefGoogle Scholar
  20. 15.
    W. J. Balfour and A. E. Douglas, Can. J. Phys. 48, 901 (1970)CrossRefGoogle Scholar
  21. 15a.
    K. C. Li and W. C. Stwalley, J. Chem. Phys. 59, 4423 (1973)CrossRefGoogle Scholar
  22. 15b.
    C. R. Vidal and H. Scheingraber, J. Mol. Spectros. 65, 46 (1977).Google Scholar
  23. 16.
    J. M. Farrar and Y. T. Lee, J. Chem. Phys. 56, 5801 (1972).CrossRefGoogle Scholar
  24. 17.
    D. E. Beck, Mol. Phys. 14, 311 (1968).CrossRefGoogle Scholar
  25. 18.
    Y. K. Kim and P. S. Bagus, Phys. Rev. A8, 1739 (1973).Google Scholar
  26. 19.
    M. R. A. Blomberg and P. E. M. Siegbahn, Int. J. Quantum Chem. 14, 583 (1978).CrossRefGoogle Scholar
  27. 20.
    K. Kirby-Docken and B. Liu, J. Chem. Phys. 66, 4309 (1977).CrossRefGoogle Scholar
  28. 21.
    B. Liu, K. M. Sando, C. S. North, H. B. Friedrich, and D. M. Chipman, J. Chem. Phys. 69, 1425 (1978).CrossRefGoogle Scholar
  29. 22.
    See, for example, A. Pipano, R. R. Gilman, and I. Shavitt, Chem. Phys. Lett. 5, 285 (1970).CrossRefGoogle Scholar
  30. 23.
    B. O. Roos and P. E. M. Siegbahn,Modern Theoretical Chemistry, Vol. 3, p. 277, H. F. Schaefer III, Ed. (Plenum, New York, 1977).Google Scholar
  31. 24.
    H. J. Silverstone and O. Sinanoglu, J. Chem. Phys. 44, 1899 (1966) and references therein.CrossRefGoogle Scholar
  32. 25.
    A. W. Mantz, J. K. G. Watson, K. Narahan Rao, D. L. Albritton, A. L. Schmeltekopf, and R. N. Zare, J. Mol. Spectrosc. 39, 180 (1971).CrossRefGoogle Scholar
  33. 26.
    C. A. Burrus, J. Chem. Phys. 28, 427 (1958)CrossRefGoogle Scholar
  34. 26a.
    B. Rosenblum, A. H. Nethercot, Jr., and C. H. Townes, Phys. Rev. 109, 400 (1958).CrossRefGoogle Scholar
  35. 27.
    L. A. Young and W. J. Eachus, J. Chem. Phys. 44, 4195 (1966).CrossRefGoogle Scholar
  36. 28.
    U. Wahlgren, J. Pacansky, and P. S. Bagus, J. Chem. Phys. 63, 2874 (1975).CrossRefGoogle Scholar
  37. 29.
    I. Suzuki, M. A. Pariseau, and J. Overend, J. Chem. Phys. 44, 3561 (1966).CrossRefGoogle Scholar
  38. 30.
    M. Yoshimine, A. D. McLean, and B. Liu, J. Chem. Phys. 58, 4412 (1973).CrossRefGoogle Scholar
  39. 31.
    M. Yoshimine, to be published.Google Scholar
  40. 32.
    H. Krupenie, J. Phys. Chem. Ref. Data 1, 423 (1972).CrossRefGoogle Scholar
  41. 33.
    M. Yoshimine, S. Green, and P. Thaddeus, Astrophys. J. 183, 899 (1973)CrossRefGoogle Scholar
  42. 33a.
    the electronic wavefunctions are reported in S. Green, P. S. Bagus, B. Liu, and A. D. McLean, Phys. Rev. A5, 1614 (1972).Google Scholar
  43. 34.
    P. Erman, Astrophys. J. 213, L89 (1977).CrossRefGoogle Scholar
  44. 35.
    B. Liu, S. Chu, and M. Yoshimine, to be publishedGoogle Scholar
  45. 35a.
    the electronic wavefunctions are reported in S. Chu, M. Yoshimine, and B. Liu, J. Chem. Phys. 61, 5389 (1974).Google Scholar
  46. 36a.
    J. Anketeil and A. Pery-Thorne, Proc. Roy. Soc. A301, 343 (1967).Google Scholar
  47. 36b.
    R. L. deZafra, A. Marshall, and H. Metcalf, Phys. Rev. A3, 1557 (1971).Google Scholar
  48. 36c.
    B. G. Elmergreen and W. H. Smith, Astrophys. J. 178, 557 (1972).CrossRefGoogle Scholar
  49. 36d.
    R. A. Sutherland and R. A. Anderson, J. Chem. Phys. 58, 1226 (1973).CrossRefGoogle Scholar
  50. 36e.
    K. R. German, T. H. Bergeman, E. M. Wernstork, and R. N. Zare, J. Chem. Phys. 58, 4304 (1973).CrossRefGoogle Scholar
  51. 36f.
    K. H. Becker, D. Haaks, and T. Tatarczyk, Chem. Phys. Lett. 25, 564 (1974).CrossRefGoogle Scholar
  52. 36g.
    J. H. Brophy, J. A. Silver, and J. L. Kinsey, Chem. Phys. Lett. 28, 418 (1974).CrossRefGoogle Scholar
  53. 36h.
    K. R. German, J. Chem. Phys. 62, 2584 (1975)CrossRefGoogle Scholar
  54. 36i.
    K. R. German, J. Chem. Phys. ibid. 63, 5252 (1975).CrossRefGoogle Scholar
  55. 36j.
    J. Brzozowski, P. Erman, and M. Lyra, Physica Script 17, 507 (1978).CrossRefGoogle Scholar
  56. 37.
    H. E. Hunziker and H. R. Wendt, J. Chem. Phys. 60, 4622 (1974).CrossRefGoogle Scholar
  57. 38.
    H. E. Hunziker and H. R. Wendt, J. Chem. Phys. 64, 3488 (1976).CrossRefGoogle Scholar
  58. 39.
    A. D. McLean and M. Yoshimine, to be published.Google Scholar
  59. 40.
    Y. Beers and C. J. Howard, J. Chem. Phys. 64, 1541 (1976).CrossRefGoogle Scholar
  60. 41.
    J. C. Gole and E. F. Hayes, J. Chem. Phys. 57, 360 (1972)CrossRefGoogle Scholar
  61. 41a.
    R. J. Blint and M. D. Newton, J. Chem. Phys. 59, 6220 (1973)Google Scholar
  62. 41b.
    W. A. Goddard III, “Lecture Notes, School on the Fundamental Chemical Basis of Reactions in the Polluted Atmosphere,” C. W. Kern, Ed. (Battelle Research Center, Seattle, WA, 1973), p. 254.Google Scholar
  63. 42.
    K. Hermann and P. S. Bagus, Phys. Rev. B17, 4082 (1978).Google Scholar
  64. 43.
    See, e.g., I. P. Batra and S. Ciraci, Phys. Rev. Lett. 39, 774 (1977)CrossRefGoogle Scholar
  65. 43a.
    I. P. Batra, K. Hermann, A. M. Bradshaw, and K. Horn, Phys. Rev. B20, 801 (1979).Google Scholar
  66. 44.
    C. W. Bauschlicher, P. S. Bagus, and H. F. Schaefer, IBM J. Res. and Dev. 22, 213 (1978); P. S. Bagus, H. F. Schaefer, and C. W. Bauschlicher, to be published.CrossRefGoogle Scholar
  67. 45.
    See, for example, the papers in the sections on “Atomic and Molecular Scattering from Surfaces” and “Aspects of Surface Chemical Bonding,” in “Topics in Surface Chemistry,” E. Kay and P. S. Bagus, Eds. (Plenum, New York, 1978).Google Scholar
  68. 46.
    A. significant exception is the work by J. A. Applebaum and D. R. Hamann, Phys. Rev. Lett. 34, 806 (1975).Google Scholar
  69. 47.
    M. Seel and P. S. Bagus, to be published.Google Scholar
  70. 48.
    K. Hermann and P. S. Bagus, Phys. Rev. B20, 1603 (1979).Google Scholar
  71. 49.
    See, e.g., K. C. Pandey, IBM J. Res. and Dev. 22, 250 (1978).CrossRefGoogle Scholar
  72. 50.
    R. W. G. Wyckoff, “Crystal Structures,” (Interscience, New York, 1964) Vol. II.Google Scholar
  73. 51.
    J. A. Appelbaum and D. R. Hamann, Phys. Rev. Lett. 31, 106 (1973)CrossRefGoogle Scholar
  74. 51a.
    A. Redondo, W. A. Goddard III, T. C. McGill, and G. T. Surratt, Solid State Comm. 20, 733 (1976); P. S. Bagus, unpublished results.CrossRefGoogle Scholar
  75. 52.
    M. Henzler and G. Schulze, unpublished.Google Scholar
  76. 53.
    H. Froitzheim, H. Ibach, and S. Lehwald, Phys. Lett. A55, 247 (1975).Google Scholar
  77. 54.
    H. F. Winters, J. W. Coburn, and E. Kay, J. Appl. Phys. 48, 4973 (1977)CrossRefGoogle Scholar
  78. 54a.
    J. W. Coburn and H. F. Winters, J. Vac. Sci. Technol. 16, 391 (1979).Google Scholar
  79. 55.
    J. W. Coburn and H. F. Winters, J. Appl. Phys. 50, 3189 (1979).CrossRefGoogle Scholar
  80. 56.
    H. F. Winters, J. Appl. Phys. 49, 5165 (1978).CrossRefGoogle Scholar
  81. 57.
    H. F. Winters and J. W. Coburn, Appl. Phys. Lett. 34, 70 (1979).CrossRefGoogle Scholar
  82. 58.
    Y. Y. Tu and H. F. Winters, to be published.Google Scholar
  83. 59.
    P. K. Larson, N. V. Smith, M. Schlüter, H. H. Farrell, K. M. Ho, and M. L. Cohen, Phys. Rev. B17, 2612 (1978).Google Scholar
  84. 60.
    JANAF Thermochemical Tables, Nat. Stand. Ref. Data Ser., Nat. Bur. Stand., No. 37 (1971).Google Scholar
  85. 61.
    V. I. Pepkin, Y. A. Lebedev, and A. Y. Apin, Zh. Fiz. Khim. 43, 1564 (1963).Google Scholar
  86. 62.
    T. J. Chuang, J. Appl. Phys., in press.Google Scholar
  87. 63.
    J. C. Slater, “Quantum Theory of Atomic Structure,” (McGraw-Hill, New York, 1960) Vol. I.Google Scholar
  88. 64.
    P. S. Bagus and M. Seel, to be published, have shown that a two configuration MCSCF calculation leads to a lower barrier than an SCF calculation for the penetration of H on Si.Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • P. S. Bagus
    • 1
  • B. Liu
    • 1
  • A. D. McLean
    • 1
  • M. Yoshimine
    • 1
  1. 1.IBM Research LaboratorySan JoseUSA

Personalised recommendations