Advertisement

Calculation of Electronically Excited States in Molecules: Intensity and Vibrational Structure of Spectra, Photochemical Implications

  • S. D. Peyerimhoff
  • R. J. Buenker
Part of the The IBM Research Symposia Series book series (IRSS)

Abstract

The present contribution demonstrates the feasibility and reliability of present-day ab initio CI calculations for the prediction and interpretation of molecular spectra with respect to transition energy, vibrational structure and intensity. A short introduction is given into the general theoretical procedure which has been found to be applicable for the treatment of any excited or ionized state regardless of its spatial characteristics (valence-shell, Ryd-berg or inner-shell excitation) and multiplicity, as well as for any structural conformations (molecular equilibrium or transition state). Numerous examples are given and comparison with corresponding experimental data is made whenever possible. The applicability of the method for the study of photochemical processes and the required theoretical extension thereto are also discussed.

Keywords

Configuration Interaction Rydberg State Vertical Excitation Energy Vibrational Energy Level Configuration Interaction Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    C. Sandorfy, P.J. Ausloos, M.B. Robin, “Chemical Spectroscopy and Photochemistry in the Vacuum-Ultraviolet”, NASI-Series Vol. 8, D. Reidel Publ., Dordrecht, Holland (1974)CrossRefGoogle Scholar
  2. (2).
    R.J. Buenker and S.D. Peyerimhoff in “Excited States in Quantum Chemistry”, eds. CA. Nicolaides and D.R. Beck, NASI-Series Vol. 46, D. Reidel Publ. Co., Dordrecht, Holland (1978) p. 45–103, 403–416CrossRefGoogle Scholar
  3. (3).
    I. Shavitt, in “Modern Theoretical Chemistry”, Vol. 3 (Methods of Electronic Structure Theory) eds. H.F. Schaefer III, Plenum Press New York (1977) p. 189Google Scholar
  4. (4).
    E.R. Davidson, in “The World of Quantum Chemistry”, eds. R. Daudel and B. Pullmann, D. Reidel Pull. Co. Holland, 1973, p. 17Google Scholar
  5. (5).
    I. Shavitt, C.F. Bender, A. Pipano and R.P. Hosteney, J. Comput. Phys. 11 (1973) 90;CrossRefGoogle Scholar
  6. (5a).
    E.R. Davidson, J. Comput. Phys. 17 (1975) 87;CrossRefGoogle Scholar
  7. (5b).
    W. Butscher and W.E. Kammer, J. Comput. Phys. 20 (1976) 313CrossRefGoogle Scholar
  8. (6).
    P.J. Bruna, Gaz. Chim. Ital. 108 (1978) 395Google Scholar
  9. (7).
    R.J. Buenker and S.D. Peyerimhoff, Theor. Chim. Acta 35 (1974) 33CrossRefGoogle Scholar
  10. (8).
    R.J. Buenker and S.D. Peyerimhoff and W. Butscher, Mol. Phys. 35 (1978) 771CrossRefGoogle Scholar
  11. (9).
    J.L. Whitten and M. Hackmeyer, J. Chem. Phys. 51 (1969) 5584CrossRefGoogle Scholar
  12. (10).
    R.J. Buenker and S.D. Peyerimhoff, Theor. Chim. Acta 39 (1975) 217CrossRefGoogle Scholar
  13. (11).
    S.D. Peyerimhoff and R.J. Buenker in “The World of Quantum Chemistry”, eds. B. Pullmann and R. Parr, D. Reidel Publ. Co. Holland, 1976, p. 213CrossRefGoogle Scholar
  14. (12).
    R.J. Buenker and S.D. Peyerimhoff, Chem. Phys. Letters 29 (1974) 253CrossRefGoogle Scholar
  15. (13).
    M. Zeitz, S.D. Peyerimhoff and R.J. Buenker, Chem. Phys. Letters 58(1978) 487CrossRefGoogle Scholar
  16. (14).
    R.J. Buenker, S.D. Peyerimhoff and S.K. Shih, J. Chem. Phys. 69 (1978) 3882CrossRefGoogle Scholar
  17. (15).
    See for example: M.B. Robin, in “Higher Excited States of Polyatomic Molecules”, Vol. 1, Academic Press, New York 1974Google Scholar
  18. (16).
    C. Sandorfy in “Applications of MO Theory in Organic Chemistry” (Progress in Theoret. Organ. Chemistry Vol. 2) Elsevier Publ. Co, Amsterdam (1977) p. 384Google Scholar
  19. (17).
    R J. Buenker and S.D. Peyerimhoff, Chem. Phys. Letters 29 (1974) 253CrossRefGoogle Scholar
  20. (18).
    A. Chutijan, R.I. Hall and S. Trajmar, J. Chem. Phys. 63 (1975) 892CrossRefGoogle Scholar
  21. (19).
    R. Runau, S.D. Peyerimhoff and R.J. Buenker, J. Mol. Spectry 68 (1977) 253CrossRefGoogle Scholar
  22. (20).
    R.J. Buenker, S.D. Peyerimhoff, Chem. Phys. 8 (1975) 56CrossRefGoogle Scholar
  23. (21).
    A. Richartz, R.J. Buenker and S.D. Peyerimhoff, Chem. Phys. 31 (1978) 187CrossRefGoogle Scholar
  24. (22).
    C. Sandorfy, in “Chemical Spectroscopy and Photochemistry in the Vacuum Ultraviolet”, eds. C. Sandorf y, P.J. Ausloos and M.B. Robin (Reidel, Dordrecht, 1974)CrossRefGoogle Scholar
  25. (23).
    E.M. Custer and W.T. Simpson, J. Chem. Phys. 60 (1974) 2012CrossRefGoogle Scholar
  26. (24).
    R.L. Jaffe and S.R. Langhoff, J. Chem. Phys. 68 (1978) 1638;CrossRefGoogle Scholar
  27. (24a).
    P.J. Bruna, G. Hirsch, S.D. Peyerimhoff and R.J. Buenker, Chem. Phys. Letters 52 (1977) 442;CrossRefGoogle Scholar
  28. (24b).
    P.J. Bruna, G. Hirsch, S.D. Peyerimhoff and R.J. Buenker, Can. J. Chem. 57 (1979) 1839CrossRefGoogle Scholar
  29. (25).
    K.H. Thunemann, S.D. Peyerimhoff and R.J. Buenker; J. Mol. Spectry 70 (1978) 432CrossRefGoogle Scholar
  30. (26).
    R.J. Celotta, S.R. Milczarek and C.E. Kuyatt, Chem. Phys. Letters 24 (1974) 428;CrossRefGoogle Scholar
  31. (26a).
    Y. Tanaka, E.B.Y. Inn and K. Watanabe, J. Chem. Phys. 21 (1953) 1651CrossRefGoogle Scholar
  32. (27).
    R.H. Huebner, R.J. Celotta, S.R. Mielczarek and E.C. Kyatt, J. Chem. Phys. 59 (1973) 5434CrossRefGoogle Scholar
  33. (28).
    P.J. Bruna, S.D. Peyerimhoff, R.J. Buenker and P. Rosmus, Chem. Phys. 3 (1974) 35CrossRefGoogle Scholar
  34. (29).
    R.H. Judge and G.W. King, Can. J. Phys. 53 (1975) 1927CrossRefGoogle Scholar
  35. (30).
    R.H. Judge, C.R. Drury-Lessard and D.C. Moule, Chem. Phys. Letters 53 (1978) 82CrossRefGoogle Scholar
  36. (31).
    P.J. Bruna, R.J. Buenker and S.D. Peyerimhoff, Chem. Phys. 22 (1977) 375;CrossRefGoogle Scholar
  37. (31a).
    P.J. Bruna in “Progress in Theoretical Organic Chemistry”, Vol. 2, ed. I. Csizmadia (Elsevier, Amsterdam, 1977)Google Scholar
  38. (32).
    R. McDiarmid, J. Chem. Phys. 64 (1976) 514;CrossRefGoogle Scholar
  39. (32a).
    R. McDiarmid, Chem. Phys. Letters 34 (1975) 130CrossRefGoogle Scholar
  40. (33).
    R.J. Buenker, S.K. Shih and S.D. Peyerimhoff, Chem. Phys. Letters 44 (1976) 385CrossRefGoogle Scholar
  41. (34).
    W. v. Niessen, G.H.F. Diercksen, L.S. Cederbaum and W. Domcke, Chem. Phys. 18 (1976) 469CrossRefGoogle Scholar
  42. (35).
    K.H. Thunemann, R.J. Buenker, S.D. Peyerimhoff and S.K. Shih, Chem. Phys. 33 (1978) 33Google Scholar
  43. (36).
    D.P. Chong and S.R. Langhoff, Chem. Phys. Letters 39 (1978) 397CrossRefGoogle Scholar
  44. (37).
    A. Barth, Diplomarbeit Bonn 1978; A. Barth, R.J. Buenker, S.D. Peyerimhoff and W. Butscher, Chem. Phys. (1979), in pressGoogle Scholar
  45. (38).
    M. Tronc, G.C. King and F.H. Read, J. Phys. B 12 (1979) 137CrossRefGoogle Scholar
  46. (39).
    A.P. Hitchcock and C.E. Brion, J. Electr. Spectr. 10 (1977) 317CrossRefGoogle Scholar
  47. (40).
    W. Eberhard, R.P. Haelbich, M. Iwan, E.E. Koch and C. Kunz, Chem. Phys. Letters 40 (1976) 180CrossRefGoogle Scholar
  48. (41).
    R.G. Cavell and D.A. Allison, J. Chem. Phys. 69 (1978) 139CrossRefGoogle Scholar
  49. (42).
    J.F. Harrison, Acc. Chem. Res. 7 (1974) 378CrossRefGoogle Scholar
  50. (43).
    P.F. Zittel, G.B. Ellison, S.V. O’Neil, E. Herbst, W.C. Lineberger and W.P. Reinhardt, J. Am. Chem. Soc. 98 (1976) 3731CrossRefGoogle Scholar
  51. (44).
    S.K. Shih, S.D. Peyerimhof f, R.J. Buenker and M. Peric, Chem. Phys. Letters 33 (1978) 206CrossRefGoogle Scholar
  52. (46).
    L.B. Harding and W.A. Goddard III, Chem. Phys. Letters 55 (1978) 217CrossRefGoogle Scholar
  53. (47).
    M. Perić, R.J. Buenker and S.D. Peyerimhoff, Can. J. Chem. (1979), in pressGoogle Scholar
  54. (48).
    M. Yoshimine, K. Tanaka, H. Tatawaki, S. Ohara, F. Sasaki and K. Ohno, J. Chem. Phys. 64 (1976) 2234CrossRefGoogle Scholar
  55. (49).
    R.J. Buenker, S.D. Peyerimhoff and M. Peric, Chem. Phys. Letters 42 (1976) 383CrossRefGoogle Scholar
  56. (50).
    R.A. Back, C. Willis and D.A. Ramsay, Can. J. Chem. 36 (1978) 1575CrossRefGoogle Scholar
  57. (51).
    A. Richartz, R.J. Buenker, P.J. Bruna and S.D. Peyerimhoff, Mol. Phys. 33 (1977) 1343CrossRefGoogle Scholar
  58. (52).
    W.R. Harshberger, J. Chem. Phys. 34 (1971) 2304Google Scholar
  59. (53).
    M. Desouter-Lecompte, J. C. Leclerc and J.C. Lorquet, Chem. Phys. 9 (1973) 147;CrossRefGoogle Scholar
  60. (53a).
    M. Desouter-Lecompte and J.C. Lorquet, J. Chem. Phys. 66 (1977) 4006;CrossRefGoogle Scholar
  61. (53b).
    C. Galloy and J.C. Lorquet, J. Chem. Phys. 67 (1977) 4672CrossRefGoogle Scholar
  62. (54).
    G. Hirsch, P.J. Bruna, R.J. Buenker and S.D. Peyerimhoff, Chem. Phys. (1979) in pressGoogle Scholar
  63. (55).
    R.J. Buenker, Gaz. Chim. Ital. 108 (1978) 245Google Scholar
  64. (56).
    J. Römelt, S.D. Peyerimhoff and R J. Buenker, Chem. Phys. 34 (1978) 403;CrossRefGoogle Scholar
  65. (56).
    J. Römelt, S.D. Peyerimhoff and R J. Buenker, Chem. Phys. 41(1979)133CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • S. D. Peyerimhoff
    • 1
  • R. J. Buenker
    • 2
  1. 1.Lehrstuhl für Theoretische ChemieUniversität BonnBonn 1W. Germany
  2. 2.Lehrstuhl für Theoretische ChemieGesamthochschule WuppertalWuppertal 1W. Germany

Personalised recommendations