Novel Radical Ions: Generation and Properties. An Interim Report on PES and ESR Investigations by the Frankfurt Group

  • H. Bock
  • G. Brähler
  • W. Kaim
  • M. Kira
  • B. Roth
  • A. Semkow
  • U. Stein
  • A. Tabatabai
Part of the The IBM Research Symposia Series book series (IRSS)


The earliest tempestuous years of Electron Spin Resonance spectroscopy1,2 — comprising development of the method, commercial production of high-resolution spectrometers complemented by the ENDOR technique and measurement of the hyperfine structures of thousands of radicals — should now be superseded by a time of reflection about practical application. Based on the experience gathered, it is now feasible that the preparative chemists participate by designing novel oxidizable compounds, inventing new redox systems, finding thermal or irradiative pathways for radical generation, studying their prospective properties and trying to isolate them. Thus in the future, new organic conductors may become available, although presently other areas of interest still dominate. To point out just one of the general auspices of ESR applications: on oxidation or on reduction, molecules M form new species Mn+ or Mn-, and the loss or the acquisition of electrons is connected not only to the energy difference between the molecular ground state and the state of the ion generation but as well accompanied by a charge redistribution, i.e. structural changes. Therefore, in view of the current interest in detailed pathways of reactions, redox processes may attract some attention.


Electron Spin Resonance Radical Cation Radical Anion Spin Population Effective Nuclear Charge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

General References

  1. (1).
    Cf. e.g. K. SCHEFFLER and H. B. STEGMANN “Elektronen-Spinresonanz”, Springer Verlag 1970,CrossRefGoogle Scholar
  2. (1a).
    or J. E. WERTZ and J. R. BALTON “Electron Spin Resonance”, McGraw-Hill 1972.Google Scholar
  3. (2).
    Cf. e.g. the annual Specialist Periodical Reports of the Chemical Society “Electron Spin Resonance” Vol. 1 (1973) and following volumes.Google Scholar
  4. (3).
    Cf. e.g. the lecture in honor of Erich Hückel’s 8oth birthday, H. BOCK, Angew. Chem. 89, 631 (1977);CrossRefGoogle Scholar
  5. (3a).
    Cf. e.g. the lecture in honor of Erich Hückel’s 8oth birthday, H. BOCK, Angew. Chem. Int. Ed. Engl., 16, 613 (1977), and the literature quoted therein.CrossRefGoogle Scholar
  6. (4).
    We only learned later on that A1C13 had been used before e.g. by D. H. GESKE and M. MERRITT, J. Am. Chem. Soc. 91, 6921(1969). Speculation on the unkown course of the redox reaction as well as on the resulting reduction product include chloride abstraction from H2CCl2 forming an A1C14 counter ion and subsequent oxidation by the carbonium ion H2CCl, or the direct formation of Al-Al bonds.CrossRefGoogle Scholar
  7. (5).
    D. GRILLER and K. U. INGOLD, Acc. Chem. Res. 9, 13 (1976).CrossRefGoogle Scholar
  8. (6).
    Cf. e.g. the review by C. PITT, J. Organomet. Chem. 61, 49 (1973) and the literature quoted therein.CrossRefGoogle Scholar
  9. (7).
    Cf. e.g. H. BOCK and H. SEIDL, J. Organomet. Chem. 13, 87 (1968),CrossRefGoogle Scholar
  10. (7a).
    Cf. e.g. H. BOCK and H. SEIDL, Chem. Ber. 101, 2815 (1908) (together with M. FOCHLER) or J. Chem. Soc. B 1968, 1158;CrossRefGoogle Scholar
  11. (7b).
    or H. BOCK and H. ALT, J. Am. Chem. Soc. 92, 1569 (1970); and literature quoted.CrossRefGoogle Scholar
  12. (8).
    Cf. e.g. E. HEILBRUNNER, V. HORNUNG, H. BOCK and H. ALT, Angew. Chem. 81, 357 (1969),Google Scholar
  13. (8a).
    Cf. e.g. E. HEILBRUNNER, V. HORNUNG, H. BOCK and H. ALT, Int. Ed. Engl. 8, 524 (1969).CrossRefGoogle Scholar
  14. (9).
    S. F. NELSON and C. R. KESSEL, J. Am. Chem. Soc. 99, 2392 (1977).CrossRefGoogle Scholar
  15. (10).
    Thesis G. BRÄHLER, University of Frankfurt 1978.Google Scholar
  16. (11).
    Thesis W. KAIM, University of Frankfurt 1977.Google Scholar
  17. (12).
    C. HELLER and H. McCONNELL, J. Chem. Phys. 32, 1535 (1960).CrossRefGoogle Scholar
  18. (13).
    T. M. McKINNEY and D. H. GESKE, J. Am. Chem. Soc. 89, 2806 (1967).CrossRefGoogle Scholar
  19. (13).
    Cf. also E. W. STONE and A. H. MAKI, J. Chem. Phys. 37, 1326 (1962).CrossRefGoogle Scholar
  20. (14).
    Cf. the recent review by S. F. NELSON, Acc. Chem. Res. 11, 14 (1978) and literature quoted.CrossRefGoogle Scholar
  21. (15).
    S. F. NELSON, W. C. HOLLINSED, C. R. KESSEL and J. C. CALABRESE, J. Chem. Soc. 100, 7876 (1978).CrossRefGoogle Scholar
  22. (16).
    H. BOCK, U. STEIN and A. SEMKOW, chem. Ber. in print: Part XXXXI of Radical Ions.Google Scholar
  23. (17).
    Cf. eg. K. JORDAN, J. A. MICHEJDA and P. D. BURROW, J. Am. Chem. Soc. 98, 1295, 7189 (1976) and lit. cit.CrossRefGoogle Scholar
  24. (18).
    Cf. F. GERSON: Hochauflösende ESR-Spektroskopie. Verlag Chemie Weinheim 1967.Google Scholar
  25. (19).
    F. GERSON, CH. WYDLER, F. KLUGE, J.Magn. Reson. 26, 271 (1977).Google Scholar
  26. (20).
    D. H. GESKE, J.L. RAGLE, M.A. BAMBENEK, A.L. BALCH, J. Am. Chem. Soc. 86, 987 (1964);CrossRefGoogle Scholar
  27. (20a).
    B. M. LATTE, R.W. TAFT, J. Am. Chem. Soc. 89, 5172 (1967).CrossRefGoogle Scholar
  28. (21).
    F. GERSON, R. GLEITER, G. MOSHUK and A. S. DREIDING, J. Am. Chem. Soc. 94, 2919 (1972)CrossRefGoogle Scholar
  29. (21a).
    F. GERSON, B. KOWERT and B. M. PEAKE, J. Am. Chem. Soc. 96, 118 (1974).CrossRefGoogle Scholar
  30. (22).
    F. GERSON, W. B. MARTIN and C.H. WYDLER, J. Am. Chem. Soc. 98, 1318 (1976).CrossRefGoogle Scholar
  31. (23).
    A. J. DOBBS, B. C. GILBERT and R. O. C. NORMAN, J. Chem. Soc. (A) 1971, 124.Google Scholar
  32. (24).
    E. A. C. LUCKEN and B. PONCIONI, JCS Perkin II 1976, 777.Google Scholar
  33. (25).
    H. BOCK, G. BRÄHLER, M. CAVA and L. LAKSHMIKANTHAM, unpublished results, cf.10 Google Scholar
  34. (26).
    Master Thesis A. TABATABAI, University of Frankfurt, 1976.Google Scholar
  35. (27).
    H. BOCK, G. BRÄHLER, J. MEINWALD and D. DAUPLAISE, unpublished results, cf.10.Google Scholar
  36. (28).
    H. BOCK, G. BRÄHLER and K. H. BÜCHEL, unpublished results.Google Scholar
  37. (29).
    J. SPANGET-LARSEN, R. GLEITER and S. HÜNIG, Chem. Phys. Lett. 37, 29 (1976).CrossRefGoogle Scholar
  38. (30).
    F. B. BRAMWELL, R. C. HADDON, F. WUDL, M. L. KAPLAN and J. H. MARSHALL, J. Am. Chem. Soc. 100, 4612 (1978).CrossRefGoogle Scholar
  39. (31).
    K. WITTEL, A. HAAS and H. BOCK, Chem. Ber. 105, 3877 (1972).CrossRefGoogle Scholar
  40. (32).
    Cf. also the ESR studies by J. VOSS and coworkers, e.g. C.-P. KLAGES and J. VOSS, Angew. Chem. 89, 744(1977); Angew. Chem. Int. Ed. Engl. 16, 723 (1977).CrossRefGoogle Scholar
  41. (33).
    Cf. e.g. Specialist Periodical Report “ESR”, Vol.3, The Chemical Society London 1976, p.155 and literature quoted.Google Scholar
  42. (34).
    R. W. FESSENDEN and R. H. SCHULER, J.Chem.Phys. 43, 2704 (1965).CrossRefGoogle Scholar
  43. (35).
    Cf. K. H. BÜCHEL “Pflanzenschutz und Schädlingsbekämpfung”, Thieme Verlag Stuttgart 1977, p. 87.Google Scholar
  44. (36).
    Radical Ions XXXIX: H. BOCK, B. ROTH and G. MAIER, Angew. Chem., in print.Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • H. Bock
    • 1
  • G. Brähler
    • 1
  • W. Kaim
    • 1
  • M. Kira
    • 1
  • B. Roth
    • 1
  • A. Semkow
    • 1
  • U. Stein
    • 1
  • A. Tabatabai
    • 1
  1. 1.Institute of Inorganic ChemistryJohann Wolfgang Goethe UniversityFrankfurt am Main 50West Germany

Personalised recommendations