Advertisement

Computer Chemistry Studies of Organic Reactions: The Wolff Rearrangement

  • Joachim Bargon
  • Kiyoshi Tanaka
  • Megumu Yoshimine
Part of the The IBM Research Symposia Series book series (IRSS)

Abstract

The Wolff Rearrangement (WR) describes the isomerization of a-carbonyl carbenes into ketenes. Originally observed during the irradiation or thermal decomposition of a-diazoketones, such carbene intermediates also occur in other areas of organic chemistry, for example during the reaction of oxygen with acetylene.

We have studied the WR by ab initio quantum chemistry, mapped out the potential energy surface of this reaction, and compared the relative stabilities of the four possible reaction products (hydroxyacetylene, oxirene, formylmethylene and ketene). Furthermore, we have computed the activation barrier to rearrangement of the a-carbonyl carbene to ketene both on the electronic singlet and triplet potential surface. The results are shown to depend on the level of approximation, in particular on the quality of the basis set and on the consideration of electron correlation energy corrections. The data obtained for the highest level of sophistication explain many experimental findings such as the spectroscopists’ inability to observe formylmethylene or oxirene. Hydroxyacetylene is predicted to be rather stable but inaccessible via the WR.

Keywords

Potential Energy Surface Activation Barrier Polarization Function Correlation Energy Organic Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Wolff, Liebigs Ann. Chem. 325, 129 (1902)CrossRefGoogle Scholar
  2. 1a.
    L. Wolff, Liebigs Ann. Chem. 333, 1 (1904)CrossRefGoogle Scholar
  3. 1b.
    L. Wolff, Liebigs Ann. Chem. 394, 25 (1912).Google Scholar
  4. 2.
    G. Schroeter, Chem. Ber. 42, 2336 (1909); 49, 2697 (1916).Google Scholar
  5. 3a).
    H. Meier and K.-P. Zeller, Angew. Chem. 87, 52 (1975)CrossRefGoogle Scholar
  6. 3aa).
    H. Meier and K.-P. Zeller,Angew. Chem., Int. Ed. 14, 32 (1975).Google Scholar
  7. 3b).
    C. Wentrup, Topics Current Chem. 62, 173 (1976).CrossRefGoogle Scholar
  8. 3c).
    H. Meier and K. P. Zeller, Angew. Chem. 89, 876 (1977)CrossRefGoogle Scholar
  9. 3cc).
    H. Meier and K. P. Zeller, Int. Ed. 16, 835 (1977).Google Scholar
  10. 4a).
    B. Eistert in W. Foerst, Ed., “Neuere Methoden der Präparativen Chemie,” Vol. I, p. 359, Verlag Chemie, Weinheim, Germany (1949).Google Scholar
  11. 4b).
    B. Eistert, Angew, Chem. 54, 124 (1941)CrossRefGoogle Scholar
  12. 4bb).
    B. Eistert, Angew, Chem.,55, 118 (1942).CrossRefGoogle Scholar
  13. 5a).
    J. Pacansky, IBM Journal of Res. and Dev. 23, 42 (1979) and references therein.CrossRefGoogle Scholar
  14. 5b).
    J. Pacansky and H. Coufal, J. Am. Chem. Soc. 102, 410 (1980).CrossRefGoogle Scholar
  15. 6.
    B. Eistert, Chem. Ber. 68, 208 (1935).Google Scholar
  16. 7.
    A. Krantz, J. Chem. Soc, Chem. Comm. 670 (1973).Google Scholar
  17. 8.
    V. Franzen, Liebigs Ann. Chem. 614, 31 (1958).CrossRefGoogle Scholar
  18. 9.
    R. T. Arnold, C. Huggett, and T. I. Taylor, J. Am. Chem. Soc. 64, 3043 (1942).Google Scholar
  19. 10a).
    G. Czismadia, J. Front, and O. P. Strausz, J. Am. Chem. Soc. 90, 7360 (1968).CrossRefGoogle Scholar
  20. 10b).
    D. E. Thornton, R. K. Gosavi, and O. P. Strausz, J. Am. Chem. Soc. ibid. 92, 1768 (1970).CrossRefGoogle Scholar
  21. 10c).
    G. Frater and O. P. Strausz, J. Am. Chem. Soc. ibid. 92, 6654 (1970).Google Scholar
  22. 11.
    K.-P. Zeller, H. Meier, H. Kolshorn, and E. Müller, Chem. Ber. 105, 1875 (1972).CrossRefGoogle Scholar
  23. 12.
    K.-P. Zeller, Tetrahedron Lett., 707 (1977).Google Scholar
  24. 13.
    S. A. Martin and P. G. Sammes, J. Chem. Soc, Perkin I, 2623 (1972).Google Scholar
  25. 14.
    R. L. Russell and F. S. Rowland, J. Am. Chem. Soc. 92, 7508 (1970).CrossRefGoogle Scholar
  26. 15.
    D. C. Montague and F. S. Rowland, ibid. 93, 5381 (1971).Google Scholar
  27. 16.
    M. Berthelot, C. R. Hebd. Sceances Acad. Sci. 70, 256 (1870)Google Scholar
  28. 16a.
    M. Berthelot, C. R. Hebd. Bull. Soc. Chim. France [2] 14, 113 (1870).Google Scholar
  29. 17.
    W. Madelung and M. E. Oberwegner, Liebigs Ann. Chem. 490, 201 (1931).CrossRefGoogle Scholar
  30. 18.
    W. G. Dauben, C. F. Hiskey, and M. A. Muhs, J. Am. Chem. Soc 74, 2082 (1952).CrossRefGoogle Scholar
  31. 19a).
    K. M. Ibne-Rasa, R. H. Peter, J. Ciabattoni, and J. O. Edwards, J. Am. Chem. Soc. 95, 7894 (1973)CrossRefGoogle Scholar
  32. 19aa.
    ) P. W. Concannon and J. Ciabattoni, J. Am. Chem. Soc. ibid. 95, 3284 (1973).CrossRefGoogle Scholar
  33. 19b).
    V. Ogata, Y. Sawaki, and H. Inoue, J. Org. Chem. 38, 1044 (1973).CrossRefGoogle Scholar
  34. 19c).
    J. Ciabattoni, R. A. Campbell, C. A. Renner and P. W. Concannon, J. Am. Chem. Soc. 92, 3826 (1970).CrossRefGoogle Scholar
  35. 19d).
    J. K. Stille and D. D. Whitehurst, J. Am. Chem. Soc. ibid. 86, 4871 (1964).CrossRefGoogle Scholar
  36. 19e).
    R. N. McDonald and P. A. Schwab, J. Am. Chem. Soc. ibid. 86, 4866 (1964).CrossRefGoogle Scholar
  37. 19f).
    V. Franzen, Chem. Ber. 88, 717 (1955)CrossRefGoogle Scholar
  38. 19ff).
    V. Franzen, Chem. Ber. 87, 1478 (1954), and earlier papers.CrossRefGoogle Scholar
  39. 20a).
    H. E. Avery and S. J. Heath, Trans. Faraday Soc. 68, 512 (1972).CrossRefGoogle Scholar
  40. 20b).
    I. Haller and G. C. Pimentel, J. Am. Chem. Soc. 84, 2855 (1962).CrossRefGoogle Scholar
  41. 21.
    H. H. Schlubach and W. Richaud, Liebigs Ann. Chem. 588, 195 (1954).CrossRefGoogle Scholar
  42. 22.
    R. Breslow, Angew. Chem., Int. Ed. 7, 565 (1968)CrossRefGoogle Scholar
  43. 22a.
    R. Breslow, Acc. Chem. Res. 6, 393 (1973).CrossRefGoogle Scholar
  44. 23.
    R. W. Hoffman and R. Schüttler, Chem. Ber. 108, 844 (1975).CrossRefGoogle Scholar
  45. 24.
    H. Hart, J. B.-C. Jiang, and M. Siasaoka, J. Org. Chem. 42, 3840 (1977).CrossRefGoogle Scholar
  46. 25.
    A. Padwa, D. Cumrine, R. Hartman, and R. Layton, J. Am. Chem. Soc. 89, 4435 (1967).CrossRefGoogle Scholar
  47. 26.
    E. Fahr, Liebigs Ann. Chem. 638, 1 (1960) and references therein.CrossRefGoogle Scholar
  48. 27a).
    E. G. Howard, Jr., Chem. Abstr. 57, 13617f (1962), U.S. Patent 3035030 (1962).Google Scholar
  49. 27b).
    A. Krantz and J. Laureni, J. Am. Chem. Soc. 96, 6768 (1979).CrossRefGoogle Scholar
  50. 27c).
    J. Laureni, A. Krantz, and R. A. Hajdn, ibid. 98, 7872 (1976).Google Scholar
  51. 27d).
    A. Krantz and J. Laureni, Ber. Bunsenges. Phys. Chem. 82, 13 (1978).Google Scholar
  52. 27e).
    G. Seibold and C. Heibl, Angew. Chem., Int. Ed. 14, 248 (1975)CrossRefGoogle Scholar
  53. 27ee).
    G. Seibold and C. Heibl,Chem. Ber. 110, 1225 (1977).CrossRefGoogle Scholar
  54. 27f).
    H. Bock, B. Solouki, G. Bert, and P. Rosmus, J. Am. Chem. Soc. 99, 1663 (1977).CrossRefGoogle Scholar
  55. 27g).
    P. Rosmus, B. Solouki, and H. Bock, Chem. Phys. 22, 453 (1977).CrossRefGoogle Scholar
  56. 28a).
    O. P. Strausz, J. Front, E. L. Dedio, P. Kebarle, and H. E. Gunning, J. Am. Chem. Soc. 89, 4805 (1967).CrossRefGoogle Scholar
  57. 28b).
    J. Front, M. Torres, H. E. Gunning, and O. P. Strausz, J. Org. Chem. 43, 2487 (1978).CrossRefGoogle Scholar
  58. 28c).
    M. Torres, A. Clement, J. E. Bertie, H. E. Gunning, and O. P. Strausz, J. Org. Chem. ibid. 43, 2490 (1978), and references therein.Google Scholar
  59. 28d).
    M. Torres, E. M. Lown, and O. P. Strausz, Heterocycles 11, 697 (1978).CrossRefGoogle Scholar
  60. 28e).
    M. Torres, I. Safarik, A. Clement, J. E. Berthie, and O. P. Strausz, Nouv. J. Chim. 3, 365 (1979).Google Scholar
  61. 29a).
    W. Kirmse and L. Horner, Liebigs Ann. Chem. 614, 4 (1958).CrossRefGoogle Scholar
  62. 29b).
    K. P. Zeller, H. Meier and E. Müller, Tetrahedron Lett. 537 (1971)Google Scholar
  63. 29bb).
    29bb) K. P. Zeller, H. Meier and E. Müller, Liebigs Am. Chem. 766, 32 (1972).CrossRefGoogle Scholar
  64. 29c).
    K. P. Zeller, H. Meier, and E. Müller, Liebigs Am. Chem. Liebigs Am. Chem. Ibid. 749, 178 (1971)Google Scholar
  65. 29cc).
    K. P. Zeller, H. Meier, and E. Müller, Org. Mass. Spec. 5, 373 (1971).CrossRefGoogle Scholar
  66. 29d).
    G. E. Castillo and H. E. Bertorello, J. Chem. Soc. Perkin I, 325 (1978) and references therein.CrossRefGoogle Scholar
  67. 29e).
    T. Wooldridge and T. D. Roberts, Tetrahedron Lett. 31, 2643 (1977).CrossRefGoogle Scholar
  68. 29f).
    L. Benati, P. C. Montevecchi, and G. Zanardi, J. Org. Chem. 42, 575 (1977).CrossRefGoogle Scholar
  69. 29g).
    U. Timm, H. Bühl, and H. Meier, J. Heterocycl. Chem. 15, 697 (1978).CrossRefGoogle Scholar
  70. 30.
    I. G. Czismadia, H. E. Gunning, R. K. Gosavi, and O. P. Strausz, J. Am. Chem. Soc. 95, 133 (1973).CrossRefGoogle Scholar
  71. 31.
    M. J. S. Dewar and C. A. Ramsden, Chem. Comm. 688, (1973).Google Scholar
  72. 32a).
    D. T. Clark, Theor. Chim. Acta 15, 225 (1969).CrossRefGoogle Scholar
  73. 32b).
    A. C. Hopkinson, J. Chem. Soc, Perkin II, 794 (1973).Google Scholar
  74. 32c).
    W. A. Lathan, L. Radom, P. C. Hariharan, W. J. Hehre, and J. A. Pople, Topics Current Chem. 40, 1 (1973). and earlier papers.Google Scholar
  75. 32d).
    C. E. Dykstra and H. F. Schaefer, III, J. Am. Chem. Soc. 98, 2689 (1976).CrossRefGoogle Scholar
  76. 32e).
    N. C. Baird and K. F. Taylor, J. Am. Chem. Soc. ibid. 100, 1333 (1978).CrossRefGoogle Scholar
  77. 32f).
    O. P. Strausz, R. K. Gosari, A. S. Denes, and I. G. Csizmadia, J. Am. Chem. Soc. ibid. 98, 4784 (1976).CrossRefGoogle Scholar
  78. 32g).
    O. P. Strausz, R. K. Gosari, and H. E. Gunning, J. Chem. Phys. 67, 3057 (1977)CrossRefGoogle Scholar
  79. 32gg).
    O. P. Strausz, R. K. Gosari, and H. E. Gunning, Chem. Phys. Lett. 54, 510 (1978).CrossRefGoogle Scholar
  80. 32h).
    C. Dykstra, J. Chem. Phys. 68, 4244 (1978).CrossRefGoogle Scholar
  81. 33.
    E. I. Snyder, J. Am. Chem. Soc. 92, 7529 (1970).CrossRefGoogle Scholar
  82. 34.
    The underestimation of strain energy has later been rectified in MINDO/3, cf. M. J. S. Dewar and W.-K. Li, J. Am. Chem. Soc. 96, 5569 (1974).Google Scholar
  83. 35.
    Recent surveys of ab initio quantum chemical calculations includeGoogle Scholar
  84. 35a).
    H. F. Schaefer, III, “The Electronic Structure of Atoms and Molecules,” Addison-Wesley, Reading, Mass (1972).Google Scholar
  85. 35b).
    J. L. Whitten, Acc. Chem. Res. 6, 238 (1973).CrossRefGoogle Scholar
  86. 36a).
    H. Preuss, Z. Naturfschg. 11, 823 (1956).Google Scholar
  87. 36b).
    E. Clementi, C. C. J. Roothaan, and M. Yoshimine, Phys. Rev. 127, 1618 (1962).CrossRefGoogle Scholar
  88. 36c).
    E. Clementi and D. Raimondi, J. Chem. Phys. 38, 2686 (1963).CrossRefGoogle Scholar
  89. 36d).
    E. Clementi, J. Chem. Phys. ibid. 40, 1944 (1964).Google Scholar
  90. 36e).
    S. Hunzinaga, J. Chem. Phys. ibid. 42, 1293 (1965).Google Scholar
  91. 36f).
    J. L. Whitten, J. Chem. Phys. ibid. 44, 359 (1966).Google Scholar
  92. 37a).
    C. C. J. Roothaan, Rev. Mod. Phys. 23, 69 (1951)CrossRefGoogle Scholar
  93. 37aa).
    C. C. J. Roothaan, Rev. Mod. Phys.32, 179 (1960).CrossRefGoogle Scholar
  94. 37b).
    R. K. Nesbet, Proc. Roy. Soc. A230, 312 (1955).Google Scholar
  95. 38a).
    P. O. Löwdin, Advan. Chem. Phys. 2, 207 (1959)CrossRefGoogle Scholar
  96. 38aa).
    P. O. Löwdin,Phys. Rev. 97, 1474 (1955).CrossRefGoogle Scholar
  97. 38b).
    P. S. Bagus, B. Liu, A. D. McLean, and M. Yoshimine in: “Computational Methods for Large Molecules and Localized States in Solids,” E. Herman, A. D. McLean, and R. K. Nesbet, Eds., Plenum Press, New York (1973) p. 87.CrossRefGoogle Scholar
  98. 39a).
    N. Sabelli and J. Hinze, J. Chem. Phys. 50, 684 (1969).CrossRefGoogle Scholar
  99. 39b).
    G. Das and A. C. Wahl, Phys. Rev. Lett. 24, 440 (1970)CrossRefGoogle Scholar
  100. 39bb).
    A. C. Wahl and G. Das, Advan. Quantum Chem. 5, 261 (1970).CrossRefGoogle Scholar
  101. 40.
    K. Tanaka and M. Yoshimine, to be published.Google Scholar
  102. 41.
    R. Ditchfield, W. J. Hehre, and J. A. Pople, J. Chem. Phys. 54, 724 (1971).CrossRefGoogle Scholar
  103. 42.
    A. D. McLean, G. H. Leow, and D. S. Berkowitz, J. Mol. Spec. 64, 184 (1977).CrossRefGoogle Scholar
  104. 43.
    F. B. von Duijnevelt, IBM Research Journal, 945 (1971).Google Scholar
  105. 44.
    P. S. Bagus, B. Liu, A. D. McLean, and M. Yoshlmine, “The Program System ALCHEMY”; A. D. McLean in “Potential Energy Surfaces in Chemistry,” W. A. Lester, Jr., Ed. (1970).Google Scholar
  106. 45.
    P. Siegbahn in “Proceedings of the SRC Atlas Symposium No. 4, “Quantum Chemistry — The State of the Art,” (1974).Google Scholar
  107. 46.
    W. J. Hehre, W. A. Lathan, R. Ditchfield, R. F. Stewart, and J. A. Pople, “Gaussian 70” QCPE Program No. 236, Quantum Chemistry Program Exchange, Indiana University, Bloomington, Ind., USA.Google Scholar
  108. 47.
    C. B. Moore and G. C. Pimentel, J. Chem. Phys. 38, 2816 (1963).CrossRefGoogle Scholar
  109. 48.
    W. A. Lathan, L. A. Curtiss, W. J. Hehre, J. B. Lisle, and J. A. Pople in Prog. in Phys. Org. Chem. Vol. II, A. Streitweiser and R. W. Taft, Eds., Wiley, New York (1974).Google Scholar
  110. 49.
    J. W. C. Johns and J. M. R. Stone, J. Mol. Spectrosc. 42, 523 (1972).CrossRefGoogle Scholar
  111. 50.
    S. R. Langhoff and E. R. Davidson, Int. J. Quant. Chem. 8, 61 (1974).CrossRefGoogle Scholar
  112. 51.
    D. Feldmann, K. Meier, H. Zacharias, and K. H. Welge, Chem. Phys. Lett. 59, 171 (1978).CrossRefGoogle Scholar
  113. 52.
    W. A. Goddard, J. Am. Chem. Soc. 98, 6093 (1976).CrossRefGoogle Scholar
  114. 53.
    D. C. Brown, J. Pacansky, and J. Bargon, unpublished.Google Scholar
  115. 54.
    M. Torres, A. Clement, H. E. Gunning, and O. P. Strausz, Nouv. J. Chim. 3, 149 (1979).Google Scholar
  116. 55.
    J. Pacansky and J. Bargon, J. Am. Chem. Soc. 97, 6896 (1975)CrossRefGoogle Scholar
  117. 55a.
    J. Pacansky, G. P. Gardini, and J. Bargon, J. Am. Chem. Soc. ibid. 98, 2665 (1976)CrossRefGoogle Scholar
  118. 55b.
    J. Pacansky, D. E. Home, G. P. Gardini, and J. Bargon, J. Phys. Chem. 81, 2149 (1977).CrossRefGoogle Scholar
  119. 56.
    F. R. Rodgers and J. Bargon, unpublished results.Google Scholar
  120. 57.
    J. Pacansky, F. Rodgers, and J. Bargon, unpublished results.Google Scholar
  121. 58.
    R. Zahradnik, Advanc. Heterocycl. Chem. 5, 14 (1965)Google Scholar
  122. 58a.
    R. Zahradnik and J. Kontecky, Collect. Czechoslov. Chem. Comm. 26, 156 (1961).Google Scholar
  123. 59a).
    D. T. Clark, Int. Symposium on the Quantum Aspects of Heterocycl. Compounds in Chem. and Blochem., The Israel Academy of Sciences and Humanities, Jerusalem (1970) p. 238.Google Scholar
  124. 59b).
    D. T. Clark, Intern. J. Sulfur Chem. C7, 11 (1972).Google Scholar
  125. 60.
    O. P. Strausz, R. K. Gosari, F. Bernardi, P. G. Mezey, J. D. Goddard, and I. C. Czismadla, Chem. Phys. Lett. 53, 211 (1978).CrossRefGoogle Scholar
  126. 61.
    B. Liu, A. D. McLean, and M. Yoshlmine, unpublished. A similar effort is planned for HONDO, see W. A. Lester’s contribution in this volume.Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • Joachim Bargon
    • 1
  • Kiyoshi Tanaka
    • 1
    • 2
  • Megumu Yoshimine
    • 1
  1. 1.IBM Research LaboratorySan JoseUSA
  2. 2.IBM World Trade Postdoctoral FellowUSA

Personalised recommendations