Ions and Osmoregulation

  • J. A. Raven
  • F. A. Smith
  • S. E. Smith
Part of the Basic Life Sciences book series (BLSC, volume 14)


Various aspects of the involvement of ions in osmoregulation (turgor regulation, volume regulation) have been reviewed recently by Bisson and Gutknecht (1979), Cram (1976), Flowers et al. (1977), Hellebust (1976), Osmond (1979) and by Pitman and Cram (1977). These reviews show that, while we know something of the phenomena of ionic involvement in osmoregulation, little is known of the molecular mechanisms of ion transport, or of the regulation of this transport in response to (e. g.) turgor-related signals. We shall discuss the ways in which ions are involved in osmoregulation in the context of the evolution of phototrophic plants; discussion of the various strategies will, we hope, provide a background for consideration of the genetics of osmoregulation in a particular plant. Our discussion will necessarily deal not only with the constraints on the ionic composition of the cell and its various compartments, but with possible mechanisms of ion transport at the cell and the whole-plant level and the regulation of this transport.


Organic Anion Marine Alga Compatible Solute Inorganic Anion Salt Gland 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aktas, M. and van Egmond, F., 1979, Effect of nitrate nutrition on iron utilization by an Fe-efficient and an Fe-inefficient soybean cultivar, PI. Soil, 51: 257.CrossRefGoogle Scholar
  2. Albert, A. and Kinzel, H., 1973, Unterscheidung von Physiotypen bei Halophyten der Neusiederseegebeites (Osterreich), Z. Pflanzen- physiol., 70; 138.Google Scholar
  3. Argyriadis, G. A., Dijkshoorn, W., and Lampe, J. E. M., 1976, Level and origin of carboxylate in buckwheat, PI. Soil., 44: 669.CrossRefGoogle Scholar
  4. Ashcroft, R. T. and Wallace, A., 1976, Sodium relations in desert plants. 5. Cation balance when grown in solution culture and in the field of three species of Lycium from the Northern Mojave Desert, Soil Sci,, 122: 48.CrossRefGoogle Scholar
  5. Atkinson, A. W., Jr., Gunning, B. E.S., John, P. C. L., and McCullough, W., 1972, Dual isotherms of ion absorption, Science 176: 6. 94.Google Scholar
  6. Bernstein, L., 1961, Osmotic adjustment of plants to saline media. II. Steady State, Am. J. Bot., 48: 909.CrossRefGoogle Scholar
  7. Bernstein, L., 1963, Osmotic adjustment of plants to saline media. II. Dynamic phase, Am. J. Bot., 50: 360.CrossRefGoogle Scholar
  8. Bisson, M. A. and Gutknecht, J., 1979, Osmotic regulation in algae, in: “Membrane Transport in Plants,” R. M. Spanswick and W. J. Lucas, eds., North-Holland, Amsterdam.Google Scholar
  9. Bisson, M. A. and Kirst, G. O., 1979a, Osmotic adaptation in the marine alga Griffithsia monilis (Rhodophyceae): the role of ions and organic compounds, Aust. J. Pi. Physiol., 6: 523.Google Scholar
  10. Bisson, M. A. and Kirst, G. O., 1979b, The brackish-water charophyte Lamprothamnium: membrane potentials and osmotic responses, in: “Membrane Transport in Plants,” R. M. SpanSwick and W. J. Lucas, in press, North-Holland, Amsterdam.Google Scholar
  11. Bowen, G. D. and Smith, S. E., 1980, The effects of mycorrhizas on nitrogen uptake by plants, Ecol. Bull., in press.Google Scholar
  12. Buggeln, R. G., 1978, Physiological investigations on Alaria escu lenta (Laminariates, Phaeophyceae). IV. Inorganic and organic nitrogen in the blade, J. Phycol., 14: 156.CrossRefGoogle Scholar
  13. Chambers, C. A., Smith, S. E., and Smith, F. A., 1980, Effects of ammonium and nitrate ions on mycorrhizal infection, nodulation and growth of Trifolium subterraneum, New Phytol., 85:(in press).Google Scholar
  14. Chapman, A. R. 0. and Craigie, J. S., 1977, Seasonal growth in Laminaria longicruris: relations with dissolved inorganic nutrients and internal reserves of nitrogen, Mar, Biol., 40: 197Google Scholar
  15. Chapman, A. R. O. and Craigie, J. S., 1978, Seasonal growth in Laminaria longicruris: relations with reserve carbohydrate storage and production, Mar. Biol., 46: 209.CrossRefGoogle Scholar
  16. Cox, G. C. and Sanders, F. E. T., 1974, Ultrastrueture of the host- fungus interface in a V-A mycorrhiza, New Phytol, 73: 901.CrossRefGoogle Scholar
  17. Cram, W. J., 1976, Negative feedback regulation of transport in cells. The maintenance of turgor, volume and nutrient supply, in: Encyclopedia of Plant Physiology, New Series, Vol. IIA, U. Luttge and M. G. Pitman, eds., Springer-Verlag, Berlin.Google Scholar
  18. Cram, W. J. and Tyerman, S., 1978, Turgor regulation in sea grasses, Proc. Inaugural Meeting F.E.S.P.P., Edinburgh, July, 1978.Google Scholar
  19. Drew, E. A., 1978, Carbohydrate and inositol metabolism in the sea- grass Cymodocea nodosa, New Phytol., 81: 249.CrossRefGoogle Scholar
  20. Fagerburg, W. R., Moon, R., and Truby, E., 1979, Studies on Sargassum III. A quantitative ultrastructural and correlated physiological study of the blade and stipe organs of S. filipendula, Protoplasma, 99: 247.CrossRefGoogle Scholar
  21. Findlay, G. O., Hope, A. B., Pitman, M. G., Smith, F. A., and Walker, F. A., 1978, Ionic relations of the marine alga Valoniopsis pachynema, Aust. J, Pl Physiol., 5: 675.Google Scholar
  22. Flowers, T. J., Troke, P. F., and Yeo, A. R., 1977, The mechanism of salt tolerance in halophytes, Ann. Rev, Pl, Physiol, 28: 89.Google Scholar
  23. Gerson, D. F. and Poole, R. J., 1972, Chloride accumulation by mung bean root tips. A low affinity active transport system at the plasmalemma, Pl, Physiol., 50: 603.Google Scholar
  24. Gimmler, H. and Schirling, R., 1978, Cation permeability of the plasmalemma of halotolerant alga Dunaliella parva. II. Cation content and glycerol concentration of the cells as dependent upon NaCl concentration, Z. Pflanzenphysiol., 87: 435.Google Scholar
  25. Greenway, H. and Setter, T. L., 1979, Na+, Cl- and K+ concentrations in Chlorella emersonii exposed to 100 and 335 mM NaCl. Aust. J. PI. Physiol., 6: 61 (cf. Aust. J. Pi. Physiol. 6:571).Google Scholar
  26. Greenway, H., Gunn, A., and Thomas, D. A., 1966, Plant responses to saline substrates. VIII. Regulation of ion concentrations in salt-sensitive and halophytic species, Aust. J. Biol. Sci., 19: 741.Google Scholar
  27. Gutknecht, J. and Dainty, J., 1968, Ionic relations of marine algae, Oceanogr. Marine Biol. Ann. Rev., 6: 163.Google Scholar
  28. Halman, M., 1974, Models of prebiological phosphorylation, in: “Cosmochemical Evolution and the Origins of Life,” J. Oro, S. L. Miller, C. Ponnamperuma, and S, Young, eds.,, D„ Reidel Publ. Co., Dardrecht-Holland.Google Scholar
  29. Hartog, C. den, 1970, “The Sea-Grasses of the World,” North-Holland, Amsterdam.Google Scholar
  30. Hellebust, J. A., 1976, Osmoregulation, Ann. Rev. PI. Physiol, 27: 485.CrossRefGoogle Scholar
  31. Huber, D. M. and Watson, R. D., 1974, Nitrogen form and plant disease, Ann. Rev. Phytopathol., 12: 319.CrossRefGoogle Scholar
  32. Ingram, D. S., Sargent, J. A., and Tommerup, I. C., 1976, Structural aspects of infection by biotrophic fungi, in: “Biochemical Aspects of Plant-Parasite Relationships,” J. Friend and J, D. R. Threfall, eds., Academic Press, London.Google Scholar
  33. Jeschke, W. D., 1976, Ionic relations of leaf cells, in: “Encyclopedia of Plant Physiology,” New Series, Vol. IIB, U, Luttge and M. G. Pitman, eds., Springer-Verlag, Berlin.Google Scholar
  34. Jeschke, W. D. and Stelter, W., 1976, Measurement of longitudinal ion profiles in single roots of Hordeum and Atriplex by use of flameless atomic absorption spectroscopy, Planta, 128: 107.CrossRefGoogle Scholar
  35. Kirkby, E. A., 1969, Ion uptake and ionic balance in plants in relation to the form of nitrogen nutrition, Symp. Ecol. Soc., 9: 215.Google Scholar
  36. Kirkby, E. A. and Knight, A. H., 1977, Influence of the level of nitrate nutrition on ion uptake and assimilation, organic acid accumulation and cation-anion balance in whole tomato plants, PI. Physiol., 60: 349.Google Scholar
  37. Kirst, G. O., 1977a, Coordination of ionic relations and mannitol concentrations in the euryhaline alga Platymonas subcordiformis (Hazen) after osmotic shocks, Planta, 135: 69.CrossRefGoogle Scholar
  38. Kirst, G. O., 1977b, Ion composition of unicellular marine and freshwater algae, with special reference to Platymonas subcordi-formis cultivated in media with different ionic strengths, Qecologia, 28: 177.Google Scholar
  39. Kirst, G. O. and Bisson, M. A., 1979, Turgor pressure regulation in marine algae. Ions and low molecular weight compounds, Aust. J. PI. Physiol., 6: 539.Google Scholar
  40. Lehtoranta, L., 1956, The cation and chloride content of cells of aquatic plants, Ann. Botan. Soc. Zool. Botan. Fennicae (Vanamo), 29: 1.Google Scholar
  41. Lyndon, R. F. and Robertson, E. S., 1979, The quantitative ultra-structure of the pea shoot apex in relation to leaf initiation, Protoplasma, 87: 387.CrossRefGoogle Scholar
  42. Nierhaus, D. and Kinzel, H., 1971, Vergleichende Untersuchungen über die organischen Sauren in Blättern höheher Pflanzen, Z. Pflanzenphysiol., 64: 107.Google Scholar
  43. Nye, P. H. and Tinker, P. B., 1977, “Solute movement in the soil- root system,” Blackwells Scientific PubIications, Oxford,Google Scholar
  44. Oechssler, G., 1968, Jahreszeitliche Schwankungen des Gehaltes an organischen Sauren in den Nadeln von Pseudotsuga menziesü (Mirb.) Franco, Picea abies (L) H. Karsten und Larix decidua Mill., Z. Pflanzenphysiol., 59: 213.Google Scholar
  45. Osmond, C. B., 1979, Ion uptake, transport and excretion, in: “Arid-Land Ecosystems: Structure, Functioning and Management,” Vol. 1, R. A. Perry and D. W. Goodall, eds., Cambridge University Press, Cambridge.Google Scholar
  46. Pitman, M. G. and Cram, W. J., 1977, Regulation of ion content in whole plants, Symb. Soc. Exp. Biol., 31: 391.Google Scholar
  47. Raven, J. A., 1976, Transport in algal cells, in: “Encyclopedia of Plant Physiology, New Series, Vol. IIA,” U. Luttge and M. P. Pitman, eds., Springer-Verlag, Berlin.Google Scholar
  48. Raven, J. A., 1977a, Regulation of solute transport at the cell level, Symp. Soc. Exp. Biol., 31:73,Google Scholar
  49. Raven, J. A., 1977b, The evolution of vascular land plants in relation to supracellular transport processes, Adv, Bot. Res., 5: 153.Google Scholar
  50. Raven, J. A., 1977c, H+ and Ca2+ in phloem and symplast: relation of the relative immobility of the ions to the cytoplasmic nature of the transport paths, New Phytol., 79: 465.CrossRefGoogle Scholar
  51. Raven, J. A., 1980, Nutrient transport in microalgae, Adv. Microb. Physiol., in press.Google Scholar
  52. Raven, J. A. and De Michelis, M. I., 1979a, Acid-base regulation during nitrate assimilation in Hydrodictyon africanum, Plant Cell and Environment, 2: 245.CrossRefGoogle Scholar
  53. Raven, J. A. and De Michelis, M. I., 1979b, Acid-base regulation during NH4+ and NO3- assimilation in Hydrodictyon africanum, in: “Membrane Transport in Plants,” R. M. Spanswick and W. J. Lucas, North-Holland, Amsterdam, in press.Google Scholar
  54. Raven, J. A. and Smith, F. A., 1974, Significance of hydrogen ion transport in plant cells, Can. J. Bot., 52: 1035.CrossRefGoogle Scholar
  55. Raven, J. A. and Smith, F. A., 1976, Nitrogen assimilation and transport in vascular plants in relation to intracellular pH regulation, New Phytol., 76: 415.CrossRefGoogle Scholar
  56. Raven, J. A. and Smith, F. A., 1979, The chemiosmotic viewpoint, in: “Membrane Transport in Plants,” R. M. Spanswick and W. J. Lucas, North-Holland, Amsterdam, in press.Google Scholar
  57. Robinson, J. B., 1971, Salinity and the whole plant, in: “Salinity and Water Use,” T. Talsma and J. R. Philip, eds., Macmillan, London.Google Scholar
  58. Safir, G. R., Boyer, J. S., and Gerdemann, J. W., 1971, Mycorrhizal enhancement of water transport in soybean, Science, 172: 581.PubMedCrossRefGoogle Scholar
  59. Schötz, F., Bathelt, H., Arnold, C-G., and Schimmer, A., 1972, Die Architektur und Organisation der Chlamydomonas-Zelle: Ergebnisse der Elektronemikroscopie von Serialschlnitten und der daraus resultierenden dreidimensionalen Rekonstruktion, Protoplasma, 75: 229.PubMedCrossRefGoogle Scholar
  60. Sicko-Goad, L., Stoermer, E. F., and Lademski, B. G., 1977, A morphometric method for correcting phytoplankton cell volume estimates, Protoplasma, 93: 147.CrossRefGoogle Scholar
  61. Smith, F. A. and Raven, J. A., 1978, The evolution of H+ transport and its role in photosynthetic energy transduction, in: “Light Transducing Membranes: Structure, Function and Evolution,” D. W. Deamer, ed., Academic Press, New York.Google Scholar
  62. Smith, F. A. and Raven, J. A., 1979, Intracellular pH and its regulation, Ann. Rev. Pi. Physiol., 30: 289.CrossRefGoogle Scholar
  63. Smith, S. E., 1979, Mycorrhizas of higher plants, in: “Handbook of Food and Nutrition,” M. Rechcigl, Jr., ed., C.R.C. Press, Inc., Palm Beach, FL, in press.Google Scholar
  64. Steer, B. T., 1973, Diurnal variations in photosynthetic products and nitrogen metabolism in expanding leaves, Pl. Physiol, 51: 744.Google Scholar
  65. Tucker, E. G., Costerton, J. W., and Bewley, J. D., 1975, The ultra- structure of the moss Tortula ruralis on recovery from desiccation, Can. J. Bot., 53: 94.CrossRefGoogle Scholar
  66. Tyerman, S., 1979, Turgor regulation and the development of water potential gradients in Posidonia, in: “Membrane Transport in Plants,” R. M. Spanswick and W. J. Lucas, North-Holland, Amsterdam, in press.Google Scholar
  67. Vorobiev, L. N., 1967, Potassium ion activity in the cytoplasm and the vacuole of cells of Chara and Griffithsia, Nature, 216: 1325.PubMedCrossRefGoogle Scholar
  68. Wallace, A., Romney, E. M., and Alexander, G. C., 1978, Mineral composition of Cuscuta nevadensis Johnston (dodder) in relation to its hosts, PI. Soil, 50: 227.CrossRefGoogle Scholar
  69. Wallace, A., Romney, E. M., Cha, J. W., and Alexander, G. V., 1974, Sodium relations in desert plants: 3. Cation-anion relationships in three species which accumulate high levels of cations in leaves, Soil Sci., 118: 397.CrossRefGoogle Scholar
  70. Walland, A. and Kinzel, H., 1966. Über die Zusammensetzung der Zellsäfte bei Archegoniaten, Flora, 156A: 597.Google Scholar
  71. Walter, H. and Stadelmann, E. J., 1968, The physiological prerequi-sites for the transition of autotrophic plants from water to terrestrial life, Biosci., 18: 694.CrossRefGoogle Scholar
  72. Winter, K., Troughton, J. H., Evenari, M., Lauchli, A., and Luttge, U., 1976, Mineral ion composition and occurrence of CAM-like diurnal malate fluctuations in plants of coastal and marine habitats of Israel and the Sinai, Oecologia, 25: 125.CrossRefGoogle Scholar
  73. Wyn Jones, R. G., Storey, R., Leigh, R. A., Ahmad, N., and Pollard, A., 1977, in: “Regulation of Cell Membrane Activities in Plants,” E. Marre and O. Cifferi, North Holland, Amsterdam.Google Scholar
  74. Ziegler, H., 1975, Nature of transported substances, in: “Encyclopedia of Plant Physiology, New Series, Vol. I,” M. H. Zimmerman and J. A. Milburn, eds., Springer-Verlag, Berlin.Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • J. A. Raven
    • 1
    • 2
    • 3
    • 4
  • F. A. Smith
    • 1
    • 2
    • 3
    • 4
  • S. E. Smith
    • 1
    • 2
    • 3
    • 4
  1. 1.Department of Environmental Biology, Research School of Biological SciencesA.N.U.Canberra CityAustralia
  2. 2.Department of BotanyThe University of AdelaideAustralia
  3. 3.Department of Agricultural BiochemistryThe University of AdelaideAustralia
  4. 4.Department of Biological SciencesUniversity of DundeeDundee, ScotlandUK

Personalised recommendations