Membrane Dynamics: Effects of Environmental Stress

  • M. J. Saxton
  • R. W. Breidenbach
  • J. M. Lyons
Part of the Basic Life Sciences book series (BLSC, volume 14)


Many workers have studied the effects of temperature on the molecular ordering of lipids in cell membranes, the relation of this ordering to the activity of membrane enzymes, and the physiological consequences of this relation. The effects of low temperature on plant membranes were reviewed recently by Lyons, Raison and Steponkus (1980).


Turgor Pressure Cytoskeletal Element Membrane Dynamic Protoplasmic Streaming Membrane Viscosity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, NS, 1976, Undulating filaments in Nitella endoplasm and motive force generation, in: “Cell Motility B,” R Goldman, T Pollard and J Rosenbaum, eds., Cold Springs Harbor Laboratory.Google Scholar
  2. Ash, JF, Louvard, D, and Singer, S. J, 1977, Antibody-induced linkages of plasma membrane proteins to intracellular actomyo- sin-containing filaments in cultured fibroblasts, Proc. Natl. Acad, Sci. USA, 74: 5584.CrossRefGoogle Scholar
  3. Axelrod, D, Koppel, DE, Schlessinger, J, Elson, E, and Webb, WW, 1976, Mobility measurement by analysis of fluorescence photobleaching recovery kinetics, Biophys. J, 16: 1055.PubMedCrossRefGoogle Scholar
  4. Bagnall, D J and Wolfe, J A., 1978, Chilling sensitivity in plants: do the activation energies of growth processes show an abrupt change at a critical temperature?, J ExpT Bo, 29: 1231.CrossRefGoogle Scholar
  5. Bamberg, E and Lauger, P, 1974, Temperature-dependent properties of gramicidin A channels, Biochim. Biophys. Acta, 367: 127.CrossRefGoogle Scholar
  6. Bashford, CL, Morgan, CG, and Radda, GK, 1976, Measurement and interpretation of fluorescence polarizations in phospho-lipid dispersions, Biochim. Biophys. Acta, 426: 157.CrossRefGoogle Scholar
  7. Blok, MC, Van Der Neut-Kok, ECM, Van Deenen, LL, and De Gier, J, 1975, The effect of chain length and lipid phase transitions on the selective permeability properties of liposomes, Biochim. Biophys. Acta, 406: 187.Google Scholar
  8. Borochov, A and Borochov, H, 1979, Increase in membrane fluidity in liposomes and plant protoplasts upon osmotic swelling, Biochim. Biophys. Acta, 550: 546.CrossRefGoogle Scholar
  9. Bourguignon, L. Y. W. and Singer, S. J, 1977, Transmembrane interactions and the mechanism of capping of surface receptors by their specific ligands, Proc. Natl. AcaD Sci. USA, 74: 5031.PubMedCrossRefGoogle Scholar
  10. Brown, Jr., RM. and Montezinos, D, 1976, Cellulose microfibrils: visualization of biosynthetic and orienting complexes in association with the plasma membrane, Proc. Natl, AcaD Sci. USA, 73: 143.CrossRefGoogle Scholar
  11. Brown, JR, RM and Willison, J H. M., 1977, Golgi apparatus and plasma membrane involvement in secretion and cell surface deposition, with special emphasis on cellulose biogenesis, in: “International Cell Biology 1976–1977,” BR Brinkley and K. R Porter, eds., Rockefeller Univ. Press, New York.Google Scholar
  12. Burgess, J, 1978, Plant cells without walls?, Nature, 275: 588.CrossRefGoogle Scholar
  13. Burgess, J and Linstead, PJ, 1977, Membrane mobility and the concanavalin A binding system of the plasmalemma of higher plant protoplasts, Planta, 136: 253.CrossRefGoogle Scholar
  14. Butler, KW, Johnson, KG, and Smith, ICP, 1978, Achole-plasma laidlawü membranes: an electron spin resonance study of the influence on molecular order of fatty acid composition and cholesterol, Arch. Biochem. Biophys., 191: 289.CrossRefGoogle Scholar
  15. Condeelis, JS, 1974, The identification of F actin in the pollen tube of Amaryllis belladonna, Exptl. Cell Res., 88: 435.CrossRefGoogle Scholar
  16. Chu, TM, Jusaitis, M, Aspinall, D, and Paleg, IG, 1978, Accumulation of free proline at low temperatures, Physiol. Plant, 43: 254.CrossRefGoogle Scholar
  17. Coster, HGL, Steudle, E, and Zimmermann, U, 1977, Turgor pressure sensing in plant cell membranes, Plant Physiol, 58: 636.CrossRefGoogle Scholar
  18. Cram, WJ, 1976, The maintenance of turgor, volume and nutrient supply, in: “Transport in Plants II, Part A, Cells,” U Luttge and MG Pitman, eds., Springer-Verlag, New York.Google Scholar
  19. Croughan, TP, Stavarek, SJ, and Rains, DW., 1978, Selection of a NaCl tolerant line of cultured alfalfa cells, Crop Sci, 18: 959.CrossRefGoogle Scholar
  20. Cuatrecasas, P, 1974, Membrane receptors, Ann. Rev. Biochem, 43: 169.PubMedCrossRefGoogle Scholar
  21. Cuatrecasas, P and Hollenberg, MD, 1976, Membrane receptors and hormone action, Adv. Protein Chem, 30: 251.CrossRefGoogle Scholar
  22. Das, TM, Hildebrandt, AC, and Riker, AJ, 1966, Cinephoto-micrography of low temperature effects on cytoplasmic streaming, nucleolar activity in sarcoplasmic reticulum membrane, Biochim., 15: 1271Google Scholar
  23. Davis, DG, Inesi, G, and Gulig-Krzywicki, TG, 1976, Lipid molecular motion and enzyme activity in sarcoplasmic reticulum membrane, Biochim, 15: 1271.CrossRefGoogle Scholar
  24. Dean, WL and Tanford, C., 1977, Reactivation of lipid-depleted Ca2+- ATPase by a nonionic detergent, J Biol. Chem., 252: 3551.PubMedGoogle Scholar
  25. de Haen, C, 1976, The non-stoichiometric floating receptor model for hormone sensitive adenylyl cyclase, J Theor Biol, 58: 383.PubMedCrossRefGoogle Scholar
  26. de Petris, S, and Raff, MC, 1973, Normal distribution, patching and capping of lymphocyte surface immunoglobulin studied by electron microscopy, Nature New Biol., 241: 257.PubMedGoogle Scholar
  27. Demel, RA and De Kruyff, B, 1976, The function of sterols in membranes, Biochim- Biophys. Acta, 457: 109.Google Scholar
  28. Edidin, M-, Zagyansky, Y., and Lardner, T J, 1976, Measurement of membrane protein lateral diffusion in single cells, Science, 191: 466.PubMedCrossRefGoogle Scholar
  29. Epstein, E and Norlyn, J D, 1977, Seawater-based crop production a feasibility study, Science, 197: 249.PubMedCrossRefGoogle Scholar
  30. Evans, E A., 1974, Bending resistance and chemically induced moments in membrane bilayers, Biophys. J, 14: 923.PubMedCrossRefGoogle Scholar
  31. Evans, EA and Hochmuth, RM, 1978, Mechanochemical properties of membranes, in: “Current Topics in Membrane Transport,” Vol. 10, F Bronner and A Kleinzeller, eds., Academic Press, New York.Google Scholar
  32. Flowers, T J, Troke, P. F., and Yeo, A. R, 1977, The mechanism of salt tolerance in halophytes, Ann. Rev. Plant Physiol, 28: 89.CrossRefGoogle Scholar
  33. Fontana, D B. and Haug, A., 1978, Salt adaptation and the membrane of Dunaliella primolecta, Plant Physiol, 61: 93 (Suppl.).Google Scholar
  34. Forer, A. and Jackson, W. T, 1975, Distribution of actin in the spindle of a higher plant Haemanthus katherinae, J Cell. Biol, 67: 117a.Google Scholar
  35. Gabbiani, G., Chaponnier, C., Zurnbe, A., and Vassalli, P, 1977, Actin and tubulin co-cap with surface immunoglobulins in mouse B lymphocytes, Nature, 269: 697.PubMedCrossRefGoogle Scholar
  36. Galla, H.-J and Sackmann, E, 1975, Chemically induced phase separation in mixed vesicles containing phosphatidic acid An optical study, J Am. Chem. Soc, 97: 4114.PubMedCrossRefGoogle Scholar
  37. Gebhardt, C., Gruler, H., and Sackmann, E, 1977, On domain structure and local curvature in lipid bilayers and biological mem-branes, Z. Naturforsch, 32c: 581.Google Scholar
  38. Gennis, R B. and Jonas, A., 1977, Protein-lipid interactions, Ann. Rev. Biophys. Bioeng, 6: 195.CrossRefGoogle Scholar
  39. Goldstein, B. D and Balchum, O. J, 1967, Effect of ozone on lipid peroxidation in the red blood cell, Proc. Soc. for Exptl. Biol and Med, 126: 356.Google Scholar
  40. Grisham, C. M. and Barnett, R E, 1973, The role of lipid-phase transitions in the regulation of the (sodium + potassium) aden osine triphosphatase, Biochem, 12: 2635.CrossRefGoogle Scholar
  41. Gruler, H., 1975, Chemoelastic effect of membranes, Z. Naturforsch. 30c: 608.Google Scholar
  42. Gutknecht, J, 1968, Salt transport in Valonia: inhibition of potassium uptake by small hydrostatic pressures, Science, 160: 68PubMedCrossRefGoogle Scholar
  43. Gutknecht, J, Hastings, DF., and Bisson, MA, 1978, Ion trans-port and turgor pressure regulation in giant algal cells, in: “Transport Across Multi-Membrane Systems,” G Giebisch, ed, Springer-Verlag, Berlin.Google Scholar
  44. Hartwig, JH and Stossel, TP, 1975, Isolation and properties of actin, myosin and a new actin binding protein in rabbit alveolar macrophages, J Biol. Chem, 250: 5696tGoogle Scholar
  45. Hastings, D F. and Gutknecht, J, 1974, Turgor pressure regulation: modulation of active potassium transport by hydrostatic pressure gradients, in: “Membrane Transport in Plants,” U Zimmermann and J Dainty, eds., Springer-Verlag, New York.Google Scholar
  46. Heath, I. B., 1974, A unified hypothesis for the role of membrane bound enzyme complexes and microtubules in plant cell wall synthesis, J, Theor Biol., 48: 445.CrossRefGoogle Scholar
  47. Helgerson, SL, Cramer, WA, and Morre, DJ, 1976, Evidence for an increase in microviscosity of plasma membranes from soybean hypocotyls induced by the plant hormone, indole-3- acetic acid, Plant Physiol., 58: 548.PubMedCrossRefGoogle Scholar
  48. Hellebust, J A., 1976, Osmoregulation, Ann. Rev. Plant Physiol., 27: 485.CrossRefGoogle Scholar
  49. Heller, R, Grignon, C., and Rona, J-P, 1974, Importance of the cell wall in the thermodynamic equilibrium of ions in free cells of Acer pseudoplatanus L., in: “Membrane Transport in Plants,” U Zimmermann and J Dainty, eds., Springer-Verlag, New York.Google Scholar
  50. Heller, R, Grignon, C., and Rona, J-P, 1974, Importance of the cell wall in the thermodynamic equilibrium of ions in free cells of Acer pseudoplatanus L., in: “Membrane Transport in Plants,” U Zimmermann and J Dainty, eds., Springer-Verlag, New York.Google Scholar
  51. Hepler, PK and Palevitz, BA, 1974, Microtubules and micro-filaments, Ann. Rev. Plant Physiol, 25: 309.CrossRefGoogle Scholar
  52. Hesketh, TR, Smith, GA, Houslay, MD, McGill, KA, Birdsall, NJ M., Metcalfe, JC., and Warren, GB, 1976, Annular lipids determine the ATPase activity of a calcium transport protein complexed with dipalmitoyllecithin, Biochem., 15:4145,CrossRefGoogle Scholar
  53. Hsiao, T C., 1973, Plant responses to water stress, Ann. Rev. Plant Physiol., 24: 519.CrossRefGoogle Scholar
  54. Hsung, J-C, Huang, L, Hoy, DJ, and Haug, A, 1974, Lipid and temperature dependence of membrane-bound ATPase activity of Acholeplasma laidlawii, Can. J Biochem,, 52: 974.PubMedCrossRefGoogle Scholar
  55. Hui, S. W., Cowden, M., Papahadjopoulos, D, and Parsons, D F., 1975, Electron diffraction study of hydrated phospholipid single bilayers: effects of temperature, hydration and surface pressure of the “precursor” monolayer, Biochinu Biophys. Acta, 382: 265.Google Scholar
  56. Ilker, R, Breidenbach, R W., and Murphy, T M., 1979, Partial purification of actin from wheat germ, Phytochem, 18: 1781.CrossRefGoogle Scholar
  57. Jacobson, K and Papahadjopoulos, D, 1975, Phase transitions and phase separations in phospholipid membranes induced by changes in temperature, pH, and concentration of bivalent cations, Biochem., 14: 152.CrossRefGoogle Scholar
  58. Jacobson, K, Wu, E, and Poste, G, 1976a, Measurement of the translational mobility of concanavalin A in glycerol-saline solutions and on the cell surface by fluorescence recovery after photobleaching, Biochim. Biophys. Acta, 433: 215.CrossRefGoogle Scholar
  59. Jacobson, K, Derzko, Z, Wu, E-S, Hou, Y, and Poste, G, 1976b, Measurement of the lateral mobility of cell surface components in single, living cells by fluorescence recovery after photo- bleaching, J Supramol. Struc, 5: 565.CrossRefGoogle Scholar
  60. Jaffe, L. F., 1977, Electrophoresis along cell membranes, Nature, 265: 600.PubMedCrossRefGoogle Scholar
  61. Jaffe, L. F. and Nuccitelli, R, 1977, Electrical controls of development, Ann. Rev, Biophys. Bioeng, 6: 445.CrossRefGoogle Scholar
  62. Kahn, C. R, Baird, K. L., Jarrett, D B., and Flier, J S., 1978, Direct demonstration that receptor crosslinking or aggrega-tion is important in insulin action, Proc. Natl, AcaD Sci. USA, 75: 4209.CrossRefGoogle Scholar
  63. Kamiya, N., 1962, Protoplasmic streaming, in: “Encyclopedia of Plant Physiology,” XVII, 2, W. Rhuland, ed, Springer-Verlag, Berlin.Google Scholar
  64. Kane, RE, 1975, Preparation and purification of polymerized actin from sea urchin egg extracts, J Cell Biol, 66: 305.PubMedCrossRefGoogle Scholar
  65. Kende, H and Gardner, G, 1976, Hormone binding in plants, Ann. Rev. Plant Physiol., 27: 267.CrossRefGoogle Scholar
  66. Kersey, YM, Hepler, PK, Palevitz, BA, and Wessells, N, 1976, Polarity of actin filaments in characean algae, Proc. Natl. Acad Sci. USA, 73: 165.PubMedCrossRefGoogle Scholar
  67. Kimelberg, HK and Papahadjopoulos, D, 1974, Effects of phos-pholipid acyl chain fluidity, phase transitions, and cholesterol on (Na+ + K+)-stimulated adenosine triphosphatase, J Biol. Chem, 249: 1071.PubMedGoogle Scholar
  68. Kitajima, Y. and Thompson, JR, G. A., 1977, Self-regulation of membrane fluidity: the effect of saturated normal and methoxy fatty acid supplementation on Tetrahymena membrane physical properties and lipid composition, Biochim. Biophys. Acta, 468: 73.Google Scholar
  69. Koppel, DE, Axelrod, D, Schlessinger, J, Elson, EL, and Webb, WW, 1976, Dynamics of fluorescence marker concentration as a probe of mobility, Biophys. J, 16: 1315.PubMedCrossRefGoogle Scholar
  70. Krasne, S, Eisenman, G, and Szabo, G, 1971, Freezing and melting of lipid bilayers and the mode of action of nonactin, valinomycin, and gramicidin, Science, 174: 412.PubMedCrossRefGoogle Scholar
  71. Kuiper, PJC, 1968, Lipids in grape roots in relation to chloride transport, Plant Physiol., 13: 1367.CrossRefGoogle Scholar
  72. Lauger, P, 1972, Carrier-mediated ion transport, Science, 178: 24.PubMedCrossRefGoogle Scholar
  73. Lea, EJA and Collins, JC, 1979, The effect of the plant hormone abscisic acid on lipid bilayer membranes, New Phytol, 82: 11.CrossRefGoogle Scholar
  74. Lee, AG, 1975, Functional properties of biological membranes: a physical-chemical approach, Prog. Biophys. Molec. Biol, 29: 3.CrossRefGoogle Scholar
  75. Lee, AG, 1977a, Lipid phase transitions and phase diagrams. I. Lipid phase transitions, Biochim. Biophys. Acta, 472: 237.Google Scholar
  76. Lee, AG, 1977b, Lipid phase transitions and phase diagrams. II. Mixtures involving lipids, Biochim. Biophys. Acta, 472: 285.Google Scholar
  77. Lee, AG, Birdsall, NJM., Metcalfe, JC., Toon, PA, and Warren, GB, 1974, Clusters in lipid bilayers and the interpretation of thermal effects in biological membranes, Biochem., 13: 3699.CrossRefGoogle Scholar
  78. Lentz, BR, Barenholz, Y, and Thompson, TE, 1976a, Fluorescence depolarization studies of phase transitions and fluidity in phospholipid bilayers. I. Single component phosphatidyl-choline liposomes, Biochem, 15: 4521.CrossRefGoogle Scholar
  79. Lentz, BR, Barenholz, Y, and Thompson, TE, 1976b, Fluorescence depolarization studies of phase transitions and fluidity in phospholipid bilayers. II. Two-component phosphatidylcholine liposomes, Biochem., 15: 4529.CrossRefGoogle Scholar
  80. Leshem, YY and Inbar, M, 1978, Resistance to gibberellin- induced changes of lipid fluidity in wheat embryo mitochondrial membranes as assessed by the fluorescent probe 1,6- diphenyl-1,3,5-hexatriene, J Exptl. BoT, 29: 671.CrossRefGoogle Scholar
  81. Lewis, DA, 1956, Protoplasmic streaming in plants sensitive and insensitive to chilling temperatures, Science, 124: 75.PubMedCrossRefGoogle Scholar
  82. Linden, CD, Wright, KL, McConnell, HM, and Fox, CF, 1973, Lateral phase separations in membrane lipids and the mechanism of sugar transport in Escherichia coli, Proc. Natl. AcaD Sci. USA, 70: 2271.PubMedCrossRefGoogle Scholar
  83. Linden, CD and Fox, CF, 1975, Membrane physical state and function, Accounts of Chem. Res., 8: 321.CrossRefGoogle Scholar
  84. Lloyd, C, 1978, The first division, Nature, 276:562,CrossRefGoogle Scholar
  85. Lyons, JM, Raison, JK, and Steponkus, PL, 1980, The plant membrane in response to low temperature: an overview, in: “Low Temperature Stress in Crop Plants: The Role of the Membrane,” JM Lyons, D Graham, and JK Raison, eds., Academic Press, New York.Google Scholar
  86. MacDonald, RC, Simon, SA, and Baer, E, 1976, Ionic influences on the phase transition of dipalmitoylphosphatidylserinef Biochem., 15: 885.Google Scholar
  87. Marcelja, S. and Wolfe, J, 1979, Properties of bilayer membranes in the phase transition or phase separation region, Biochim. Biophys. Acta, 557: 24.CrossRefGoogle Scholar
  88. Marsh, D, Watts, A, and Knowles, PF, 1976, Evidence for phase boundary lipiD Permeability of Tempo-choline into dimyristoyl- phosphatidylcholine vesicles at the phase transition, Biochem., 15: 3570.CrossRefGoogle Scholar
  89. Marsh, D, Watts, A., and Knowles, P. F., 1977, Cooperativity of the phase transition in single- and multibilayer lipid vesicles, Biochim. Biophys. Acta, 465: 500.CrossRefGoogle Scholar
  90. Martin, C. E and Foyt, D C., 1978, Rotational relaxation of 1,6- diphenylhexatriene in membrane lipids of cells acclimated to high and low growth temperatures, Biochem, 17:3587,CrossRefGoogle Scholar
  91. Martin, CE and Thompson, Jr, GA, 1978, Use of fluorescence polarization to monitor intracellular membrane changes during temperature acclimation. Correlation with lipid compositional and ultrastructural changes, Biochem, 17: 3581.CrossRefGoogle Scholar
  92. Mazia, D, Schatten, G., and Sale, W, 1975, Adhesion of cells to surfaces coated with polylysine, J Cell Biol, 66: 198.PubMedCrossRefGoogle Scholar
  93. McKeehan, WL and Ham, RG, 1976r Stimulation of clonal growth of normal fibroblasts with substrata coated with basic polymers, J Cell, Biol, 71: 727.Google Scholar
  94. Melchior, DL and Steim, JM, 1976, Thermotropic transitions in biomembranes, Ann. Rev, Biophys, Bioeng, 5: 204.Google Scholar
  95. Melchior, DL and Steim, JM, 1977, Control of fatty acid com-position of Acholeplasma laidlawii membranes, Biochim, Biophys, Acta, 466: 148.Google Scholar
  96. Metcalfe, JC, Bennett, JP, Hesketh, TR, Houslay, MD, Smith, GA, and Warren, GB, 1976, The lateral organization of lipids around a calcium transport protein: evidence for a phospholipid annulus that modulates function, in: “The Structural Basis of Membrane Function,” Y Hatefi and L Djavadi- Ohaniance, eds., Academic Press, New York.Google Scholar
  97. Mudd, JB, 1966., Reaction of peroxyacetyl nitrate with glutathione, J Biol. Chem., 241: 4077.Google Scholar
  98. Muller, M and Santarius, KA, 1978, Changes in chloroplast membrane lipids during adaptation of barley to extreme salinity, Plant Physiol., 62: 326.PubMedCrossRefGoogle Scholar
  99. Mueller, SC, Brown, RM, and Scott, TK, 1976, Cellulosic microfibrils: nascent stages of synthesis in a higher plant cel1 Science, 194: 949.Google Scholar
  100. Nagata, T and Takebe, I, 1970, Cell wall regeneration and cell division in isolated tobacco mesophyll protoplasts, Planta, 92: 301.CrossRefGoogle Scholar
  101. Nagle, JF and Scott, JR, HL, 1978, Lateral compressibility of lipid mono- and bilayers: theory of membrane permeability, Biochim. Biophys. Acta, 513: 236.PubMedCrossRefGoogle Scholar
  102. Nandini-Kishore, SG, Kitajima, Y, and Thompson, Jr, GA, 1977, Membrane fluidizing effects of the general anesthetic methoxyflurane elicit an acclimation response in Tetrahymena, Biochem. Biophys. Acta, 471: 157.CrossRefGoogle Scholar
  103. Nozawa, Y, Iida, H, Fukushima, H, Ohki, K, and Qhnishi, S, 1974, Studies on Tetrahymena membranes: temperature-Induced alterations in fatty acid composition of various membrane fractions in Tetrahymena pyriformis and its effect on membrane fluidity as inferred by spin-label study, Biochim. Biophys. Acta, 367: 134.CrossRefGoogle Scholar
  104. Ohnishi, S and Ito, T, 1973, Clustering of lecithin molecules in phosphatidylserine membranes induced by calcium ion binding to phosphatidylserine, Biochem. Biophys. Res. Commun., 51: 132CrossRefGoogle Scholar
  105. Ohnishi, S and Ito, T, 1974, Calcium-induced phase separations in phosphatidylserine-phosphatidylcholine membranes, Biochem., 13: 881.CrossRefGoogle Scholar
  106. Op Den Kamp, JAF, De Gier, J, and Van Deenen, LLM, 1974 Hydrolysis of phosphatidylcholine liposomes by pancreatic phospholipase A2 at the transition temperature, Biochim. Biophys. Acta, 345: 253.Google Scholar
  107. Op Den Kamp, JAF, Kauerz, MTh, and Van Deenen, LLM, 1975, Action of pancreatic phospholipase A2 on phosphatidylcholine bilayers in different physical states, Biochem. Biophys. Acta, 406: 169.CrossRefGoogle Scholar
  108. Orida, N and Poo, M, 1978, Electrophoretic movement and localization of acetylcholine receptors in the embryonic muscle cell membrane, Nature, 275: 31.PubMedCrossRefGoogle Scholar
  109. Owicki, JC, Springgate, MW, and McConnell, HM, 1978, Theoretical study of protein-lipid interactions in bilayer membranes, Proc. Natl. AcaD Sci. USA, 75: 1616.PubMedCrossRefGoogle Scholar
  110. Owicki, J C. and McConnell, H. M., 1979, Theory of protein-lipid and protein-protein interactions in bilayer membranes, Proc. Natl. AcaD Sci. USA, 76: 4750.PubMedCrossRefGoogle Scholar
  111. Palatini, P, Dabbeni-Sala, F., Pitotti, A., Bruni, A., and Mandersloot, J C., 1979, Activation of (Na+ + K+)-dependent ATPase by lipid vesicles of negative phospholipids, Biochim. Biophys. Acta, 466: 1.Google Scholar
  112. Palevitz, BA, 1976, Actin cables and cytoplasmic streaming in green plants, in: “Cell Motility B,” R Goldman, T Pollard, and J Rosenbaum, eds., Cold Springs Harbor Laboratory.Google Scholar
  113. Palevitz, BA, Ash, JF, and Hepler, PK, 1974, Actin in the green algae Nitella, Proc. Natl. AcaD Sci. USA, 71: 363.PubMedCrossRefGoogle Scholar
  114. Palevitz, BA and Hepler, PK, 1976, Cellulose microfibril orientation and cell shaping in developing guard cells of Allium: the role of microtubules and ion accumulation, Planta, 132: 71.CrossRefGoogle Scholar
  115. Papahadjopoulos, D, Jacobson, K, Nir, S, and Isac, T, 1973, Phase transitions in phospholipid vesicles: fluorescence polarization and permeability measurements concerning the effect of temperature and cholesterol, Biochim. Biophys. Acta, 311: 330.CrossRefGoogle Scholar
  116. Parups, EV and Miller, RW, 1978, Investigation of effects of plant growth regulators on liposome fluidity and permeability, Physiol. PlanT, 42: 415.CrossRefGoogle Scholar
  117. Patterson, BC and Graham, D, 1977, Effect of chilling temperature on the protoplasmic streaming of plants from different climates, J Exptl. BoT, 28: 736.CrossRefGoogle Scholar
  118. Peters, R, Peters, J, Tews, K. H., and Bahr, W., 1974, A micro-fluorimetric study of translational diffusion in erythrocyte membranes, Biochim. Biophys. Acta, 367: 282.CrossRefGoogle Scholar
  119. Phillips, MC, Graham, DE, and Hauser, H, 1975, Lateral compressibility and penetration into phospholipid monolayers and bilayer membranes, Nature, 254: 155.CrossRefGoogle Scholar
  120. Pike, CS, Berry, JA, and Raison, JK, 1980, Fluorescence polarization studies of membrane phospholipid phase separations in warm and cool climate plants, in: “Low Temperature Stress in Crop Plants: The Role of the Membrane,” JM Lyons, D Graham, and JK Raison, eds., Academic Press, New York.Google Scholar
  121. Pollard, TP, 1976, The role of actin in the temperature-dependent gelation and contraction of extracts of Acanthamoeba, J Cell Biol., 68: 579–601.PubMedCrossRefGoogle Scholar
  122. Pollard, TD and Korn, ED, 1973, The “contractile” proteins of Äcanthamoeba castellanii, Cold Springs Harbor Symposium Quant, Biol., 37: 573.Google Scholar
  123. Poo, M and Cone, RA, 1974, Lateral diffusion of rhodospin in the photoreceptor membrane, Nature, 247: 438.PubMedCrossRefGoogle Scholar
  124. Poo, M and Robinson, KR, 1977, Electrophoresis of concanavalin A receptors along embryonic muscle cell membrane, Nature, 265: 602.PubMedCrossRefGoogle Scholar
  125. Poo, M, Poo, W.-JH, and Lam, JW, 1978, Lateral electrophoresis and diffusion of concanavalin A receptors in the membrane of embryonic muscle cell, J Cell Biol., 76: 483.PubMedCrossRefGoogle Scholar
  126. Poo, M, Lam, JW, Orida, N, and Chao, AW, 1979, Electrophoresis and diffusion in the plane of. the cell membrane, Biophys. J, 26: 1.PubMedCrossRefGoogle Scholar
  127. Porter, KR, Byers, HR, and Ellisman, MH, 1979, The cytoskeleton, in: “The Neurosciences: Fourth Study Program,” F. O. Schmitt and F. G. Worden, eds.Google Scholar
  128. Potter, F and Ross, GJS, 1980, Maximum likelihood estimation of breakpoints and the comparison of the goodness of fit with that of conventional curves, in: “Low Temperature Stress in Crop Plants: The Role of the Membrane,” JM Lyons, D Graham, and JK Raison, eds., Academic Press, New York.Google Scholar
  129. Racusen, RH, Kinnersley, AM, and Galston, AW, 1977, Osmotically induced changes in electrical properties of plant protoplast membranes, Science, 198: 405.PubMedCrossRefGoogle Scholar
  130. Raison, JK and Berry, JA, 1978, The physical properties of membrane lipids in relation to the adaptation of higher plants and algae to contrasting thermal regimes, Carnegie Institution Yearbook, 77: 276.Google Scholar
  131. Raison, JK, Chapman, EA, Jacobs, SWL, and Wright, LC, 1980, Membrane lipid transitions: their correlation with the climatic distribution of plants, in: “Low Temperature Stress in Crop Plants: The Role of the Membrane,” J M. Lyons, D Graham, and J K. Raison, eds., Academic Press, New York.Google Scholar
  132. Raven, JA, 1979, The possible role of membrane electrophoresis in the polar transport of IAA and other solutes in plant tissues, New Phytol., 82: 285.CrossRefGoogle Scholar
  133. Rimon, G, Hanski, E, Braun, S, and Levitzki, A, 1978, Mode of coupling between hormone receptors and adenylate cyclase elucidated by modulation of membrane fluidity. Nature, 276: 394.PubMedCrossRefGoogle Scholar
  134. Robenek, H, 1979, Der Einfluß von Indonyl(3)essigsaure (IES) auf die Verteilung der intramembranösen Partikel des Plasmalemmas isolierter Sproßkallusprotoplasten von Skimmia japonica Thunb., Z. Pflanzenphysiol., 93: 317.Google Scholar
  135. Roland, J-C., 1973, The relationship between the plasmalemma and plant cell wall, Intl. Rev. Cytol., 36: 45.CrossRefGoogle Scholar
  136. Rona, JP, Cornel, LD, and Heller, R, 1977, Determination and interpretation of the electrical profile of free cells of Acer pseudoplatanus, in: “Echanges Ioniques Transmembranaires Chez Les Vegetaux,”11 M Thellier, A Monnier, M Demarty, and J Dainty, eds., C.N.RS., Paris.Google Scholar
  137. Sandermann, Jr, H, 1978, Regulation of membrane enzymes by lipids, Biochim. Biophys. Acta, 515: 209.Google Scholar
  138. Schilde-Rentschler, L, 1977, Role of the cell wall in the ability of tobacco protoplasts to form callus, Planta, 135: 177.CrossRefGoogle Scholar
  139. Shimshick, EJ and McConnell, HM, 1973, Lateral phase separation in phospholipid membranes, Biochem., 12: 2351.CrossRefGoogle Scholar
  140. Silvius, JR, Saito, Y, and McElhaney, RN., 1977, Membrane lipid biosynthesis in Acholeplasma laidlawii B., Arch. Biochem. Biophys., 182: 455.CrossRefGoogle Scholar
  141. Silvius, JR, Read, BD, and McElhaney, RN, 1978, Membrane enzymes: artifacts in Arrhenius plots due to temperature dependence of substrate-binding affinity, Science, 199: 902.PubMedCrossRefGoogle Scholar
  142. Sinensky, M., 1974, Homeoviscous adaptation — a homeostatic process that regulates the viscosity of membrane lipids in Escherichia coli, Proc. Natl. AcaD Sci. USA, 71: 522.PubMedCrossRefGoogle Scholar
  143. Singh, TN, Paleg, LG, and Aspinall, D, 1973, Stress metabolism. III. Variations in response to water deficit in the barley plant, AusT J Biol. Sci., 26: 65.Google Scholar
  144. Sklar, LA, Miljanich, GP, and Dratz, EA., 1979, phospholipid lateral phase separation and the partition of cis-parinaric acid and transparinaric acid among aqueous, solid lipid, and fluid lipid phases, Biochem., 18: 1707.Google Scholar
  145. Stewart, G. R and Lee, J A., 1974, The role of proline accumulation in halophytes, Planta, 120: 279.CrossRefGoogle Scholar
  146. Stossel, T P. and Hartwig, J H., 1976, Interaction of actin, myosin and a new actin-binding protein in rabbit pulmonary macrophages. II. Role of cytoplasmic movement and phagocytosis, J Cell Biol., 68: 602.PubMedCrossRefGoogle Scholar
  147. Suurkuusk, J, Lentz, BR, Barenholz, Y, Biltonen, RL, and Thompson, TE, 1976, A calorimetric and fluorescent probe study of the gel-liquid crystalline phase transition in small single-lamellar dipalmitoylphosphatidylcholine vesicles, Biochem., 15: 1391.Google Scholar
  148. Tal, M, Rosental, I, Abramovitz, R, and Forti, M, 1979, Salt tolerance in Simmondsia chinensis: water balance and accumulation of chloride, sodium and proline under low and high salinity, Ann. BoT, 43: 701.Google Scholar
  149. Thompson, G, 1980, Molecular control of membrane fluidity, in: “Low Temperature Stress in Crop Plants: The Role of the Membrane,” JM. Lyons, D Graham, and JK Raison, eds., Academic Press, New York.Google Scholar
  150. Thompson, JR, GA and Nozawa, Y, 1977, Tetrahymena: a system for studying dynamic membrane alterations within the eukaryotic cell, Biochim. Biophys. Acta, 472: 55.Google Scholar
  151. Ting, IP, Perchorowicz, J, and Evans, L, 1974, Effect of ozone on plant cell membrane permeability, in: “Air Pollution Effects on Plant Growth,” H Dugger, eD, ACS Symposium Series 3.Google Scholar
  152. Ting, P and Solomon, AK, 1975, Temperature dependence of N- phenyl-1-naphthy1amine binding in egg lecithin vesicles, Biochim. Biophys. Acta, 406: 447.CrossRefGoogle Scholar
  153. Toh, BH and Hard, GC, 1977, Actin co-caps with concanavalin A receptors, Nature, 269: 695.PubMedCrossRefGoogle Scholar
  154. Trauble, H and Eibl, H, 1974, Electrostatic effects on lipid phase transitions: membrane structure and ionic environment, Proc. Natl, AcaD Sci. USA, 71: 214.CrossRefGoogle Scholar
  155. Trewavas, AJ, 1976, Plant growth substances, in: “Molecular Aspects of Gene Expression in Plants,” JA Bryant, ed, Academic Press, New York.Google Scholar
  156. Trewavas, A, 1979, What is the molecular basis of plant hormone action?, Trends in Biochim. Sci., 4: 199.Google Scholar
  157. Veatch, WR, Mathies, R, Eisenberg, M, and Stryer, L, 1975, Simultaneous fluorescence and conductance studies of planar bilayer membranes containing a highly active and fluorescent analog of gramicidin A, J Mol. Biol., 99: 75.PubMedCrossRefGoogle Scholar
  158. Warren, GB and Metcalfe, JC-, 1977, What is the phospholipid specificity of a reconstituted calcium pump?, Biochem. Soc. Trans., 5: 517.Google Scholar
  159. Watts, A, Harlos, K, Maschke, W, and Marsh, D, 1978, Control of the structure and fluidity of phosphatidylglycerol bilayers by pH titration, Biochim. Biophys. Acta, 510: 63.CrossRefGoogle Scholar
  160. Weinstein, LH and McCune, DC, 1979, Air pollution stress, in: “Stress Physiology in Crop Plants,” H Mussell and RC Staples, eds., John Wiley & Sons, New York.Google Scholar
  161. Weller, H. and Haug, A., 1977, Effects of Ca2+ and K+ on the physical state of the membrane lipids in Thermoplasma acidophila, J Gen. Micro., 99: 379.Google Scholar
  162. Willcox, ME and Patterson, BD, 1980, Breaks or curves?, A visual aid to the interpretation of data, in.: “Low Temperature Stress in Crop Plants: The Role of the Membrane,” JM Lyons D Graham, and JK Raison, eds., Academic Press, New York,Google Scholar
  163. Williamson, FA, Fowke, LC, Constabel, FC and Gamborg, OL, 1976, Labelling of concanavalin A sites on the plasma membrane of soybean protoplasts, Protoplasma, 89: 305.CrossRefGoogle Scholar
  164. Williamson, FA, 1979, Concanavalin A binding sites on the plasma membrane of leek stem protoplasts, Planta, 144:209,CrossRefGoogle Scholar
  165. Williamson, RE, 1974, Actin in the alga Chara corallinia, Nature 248: 801.PubMedCrossRefGoogle Scholar
  166. Willison, JHM, 1976, An examination of the relationship between freeze-fractured plasmalemma and cell-wall microfibrils, Protoplasma, 88: 187.CrossRefGoogle Scholar
  167. Wolfe, J, 1980, Some physical properties of membranes in the phase separation region and their relation to chilling damage in plants, in: “Low Temperature Stress in Crop Plants: The Role of the Membrane,” JM Lyons, D Graham, and JK Raison, eds., Academic Press, New York.Google Scholar
  168. Wolfe, J and Bagnall, D, 1980, Statistical tests to decide between straight line segments and curves as suitable fits to Arrhenius plots or other data, in: “Low Temperature Stress in Crop Plants: The Role of the Membrane,” JM Lyons, D Graham, and JK Raison, eds., Academic Press, New York.Google Scholar
  169. Wood, A and Paleg. LG, 1972, The influence of gibberellic acid on the permeability of model membrane systems, Plant Physiol., 50: 103.PubMedCrossRefGoogle Scholar
  170. Wood, A and Paleg, LG, 1974, Alteration of liposomal membrane fluidity by gibberellic acid, AusT J Plant Physiol., 1: 31.CrossRefGoogle Scholar
  171. Wood, A, Paleg, LG, and Spotswood, TM, 1974, Hormone-phospholipid interaction: a possible hormonal mechanism of action in the control of membrane permeability, Aust J Plant Physiol., 1: 167.CrossRefGoogle Scholar
  172. Wu, S. H. and McConnell, H. M., 1973, Lateral phase separations and perpendicular transport in membranes, Biochem. Biophys. Res. Commun, 55: 484.CrossRefGoogle Scholar
  173. Wu, S. H. and McConnell, H. M., 1975, Phase separations in phospho-lipi membranes, Biochem., 14: 847.CrossRefGoogle Scholar
  174. Wunderlich, F, Ronai, A, Speth, V, Seelig, J, and Blume, A, 1975, Thermotropic lipid clustering in Tetrahymena membranes, Biochem., 14: 3730.CrossRefGoogle Scholar
  175. Wyn Jones, RG, Storey, R, Leigh, RA, Ahmad, N, and Pollard, A, 1977, A hypothesis on cytoplasmic osmoregulation, in: “Regulation of Cell Membrane Activities in Plants,” E Marré and O Ciferri, eds., Elsevier North Holland, Amsterdam,Google Scholar
  176. Yelenosky, G, 1979, Accumulation of free proline in citrus leaves during cold hardening of young trees in controlled temperature regimes, Plant Physiol., 64: 425.PubMedCrossRefGoogle Scholar
  177. Zagyansky, Y and Edidin, M, 1976, Lateral diffusion of concanavalin A receptors in the plasma membrane of mouse fibroblasts, Biochim Biophys. Acta, 433: 209.Google Scholar
  178. Zimmermann, U, 1977, Cell turgor pressure regulation and turgor pressure-mediated transport processes, in: “Integration of Activity in the Higher Plant,” DH Jennings, eD, Cambridge University Press, CambridgeGoogle Scholar
  179. Zimmermann, U, 1978, Physics of turgor and osmoregulation, Ann. Rev. Plant Physiol., 29: 121.CrossRefGoogle Scholar
  180. Zimmermann, U and Dainty, J, , 1974, Membrane Transport in Plants, Springer-Verlag, New York, pp. 102–103.CrossRefGoogle Scholar
  181. Zimmermann, U and Steudle, E, 1977, Action of indoleacetic acid on membrane structure and transport, in.: “Regulation of Cell Membrane Activities in Plants,” E Marre and O, Ciferri, eds., Elsevier North Holland, Amsterdam.Google Scholar
  182. Zimmermann, U, Steudle, E, and Lelkes, Pl, 1976, Turgor pressure regulation in Valonia utricularis, Plant Physiol, 58: 608.PubMedCrossRefGoogle Scholar
  183. Zimmermann, U, Beckers, F, and Steudle, E, 1977, Turgor sensing in plant cells by the electro-mechanical properties of the membrane, in: “Echanges loniques Transmembranaires Chez Les Vegetaux,” M Thellier, A Monnier, M Demarty, and J Daintyf eds., C.N.RS., Paris.Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • M. J. Saxton
    • 1
    • 2
  • R. W. Breidenbach
    • 1
    • 2
  • J. M. Lyons
    • 3
  1. 1.Plant Growth Laboratory/AgronomyUniversity of CaliforniaDavisUSA
  2. 2.Range Science Dept.University of CaliforniaDavisUSA
  3. 3.Department of Vegetable CropsUniversity of CaliforniaDavisUSA

Personalised recommendations