The Role of Organic Solutes in Osmoregulation in Halophytic Higher Plants

  • R. L. Jefferies
Part of the Basic Life Sciences book series (BLSC, volume 14)


Excessive salt accumulations prevent or limit the growth of crops on at least 50 million hectares of agricultural land, particularly in areas where arid or semi-arid conditions exist (Carter, 1975). If these lands are to be used to increase plant productivity it is pertinent to examine the characteristics of plants which have evolved under the influence of natural selection in saline environments, in order to recognize characters that are likely to increase the fitness of plants in such habitats. Halophytes growing in coastal and estuarine ecosystems are of particular interest, because of readily available supplies of saline water and nutrients (with the possible exception of nitrogen). Coastal environments are nutrient sinks, and the tidal input of large quantities of water and mineral ions, represents an energy subsidy to these ecosystems (Odum, 1974). In arid regions, in contrast, the combined effects of drought and salinity present a formidable obstable to the breeder attempting to introduce varieties which will give an adequate yield.


Salt Marsh Osmotic Potential Organic Solute Soluble Nitrogen Quaternary Ammonium Compound 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahmad, I., Larher, F., and Stewart, G. R., 1979, Sorbitol, a compatible osmotic solute in Plantago maritima, New Phytol., 82: 671.CrossRefGoogle Scholar
  2. Albert, R. and Popp, M., 1977, Chemical composition of halophytes from the Neusiedler Lake Region in Austria, Oecologia, 27: 157.CrossRefGoogle Scholar
  3. Barnard, R. A. and Oaks, A., 1970, Metabolism of proline in maize root tips, Can. J. Bot., 48: 1155.CrossRefGoogle Scholar
  4. Bidwell, R. G. S., 1974, “Plant Physiology,” Macmillan, New York.Google Scholar
  5. Bowman, M. S. and Rohringer, R., 1970, Formate metabolism in healthy and rust-infected wheat, Can. J. Bot., 48: 803.CrossRefGoogle Scholar
  6. Brown, A. D., 1976, Microbial water stress, Bact. Rev,, 40: 803.PubMedGoogle Scholar
  7. Brown, L. M. and Hellebust, J. A., 1978, Sorbitol and proline as intracellular osmotic solutes in the green alga Stichococcus bacillaris, Can. J. Bot., 56: 676.CrossRefGoogle Scholar
  8. Brown, R. H., 1978, A difference in N use efficiency in C3 and C4 plants and its implication in adaptation and evolution, Crop Sci., 18: 93.CrossRefGoogle Scholar
  9. Byerrum, R. U., Sato, C. S., and Ball, C. D., 1956, Utilization of betaine as a methyl group donor in tobacco, Plant Physiol., 31: 374.PubMedCrossRefGoogle Scholar
  10. Carter, D. L., 1975, Problems of salinity in agriculture, in: “Plants in Saline Environments,” A. Poljakoff-Mayber and J. Gale, eds., Springer-Verlag, Berlin.Google Scholar
  11. Cavalieri, A. J. and Huang, A. H. C., 1979, Evaluation of proline accumulation in the adaptation of diverse species of marsh halophytes to the saline environment, Amer. J. Bot., 66: 307.CrossRefGoogle Scholar
  12. Cromwell, B. T. and Rennie, S. D., 1954, The biosynthesis and metabolism of betaines in plants. 3. Studies on the biosynthesis of glycine-betaine in seedlings of wheat (Triticum vulgare VIII.), Biochem. J., 58: 322.Google Scholar
  13. Delwiche, C. C. and Bregoff, H. M., 1958, Pathway of betaine and choline synthesis in Beta vulgaris, J. Biol, Chem., 223: 430.Google Scholar
  14. Dillon, E. M., 1978, Growth and metabolic responses of salt marsh halophytes in response to salinity, MSc. Thesis, University of Toronto.Google Scholar
  15. Flowers, T. J., Troke, P. F-, and Yeo, A. R., 1977, The mechanism of salt tolerance in halophytes, Ann. Rev. Plant Physiol,, 28: 89.CrossRefGoogle Scholar
  16. Flowers, T. J. and Hall, J. L., 1978, Salt tolerance in the halophyte, Suaeda maritima (L.) Dum.: The influence of the salinity of the culture solution on the content of various organic compounds, Ann. Bot., 42: 1057.Google Scholar
  17. Flowers, T. J., Hall, J. L., and Ward, M. E., 1978, Salt tolerance in the halophyte, Suaeda maritima (L,) Dum: Properties of malic enzyme and PEP carboxylase, Ann. Bot,, 42: 1065.Google Scholar
  18. Franks, F. and Eagland, D., 1975, The role of solvent interactions in protein conformation, C.R.C. Crit. Rev. Biochem., 3: 165.CrossRefGoogle Scholar
  19. Gimingham, C. H., 1965, Maritime and sub-maritime communities, in: “The Vegetation of Scotland,” J. H. Burnett, ed., Oliver and Boyd, Edinburgh.Google Scholar
  20. Goas, M., 1965, Sur le metabolisme azote des halophytes: etude des acides amines et amides libres, Bull. Soc. Fr. Physiol. Veg„, 11: 309.Google Scholar
  21. Gray, A. J., Parsell, R. J., and Scott, R., 1979, The genetic structure of plant populations in relation to the development of salt marshes, in: “Ecological Processes in Coastal Environments,” R. L. Jefferies and A. J. Davy, eds., Blackwell Scientific Publications, Oxford.Google Scholar
  22. Greenway, H., 1973, Salinity, plant growth and metabolism, J. Aust. Inst. Agric. Sci., 39: 24.Google Scholar
  23. Hanson, A. D. and Nelsen, C. E., 1978, Betaine accumulation and 14C formate metabolism in water-stressed barley leaves, Plant Physiol., 62: 305.PubMedCrossRefGoogle Scholar
  24. Harper, J. L., 1977, “The Population Biology of Plants,”1 Academic Press, London.Google Scholar
  25. Hellebust, J. A., 1976, Osmoregulation, Ann. Rev. Plant Physiol., 27: 485.CrossRefGoogle Scholar
  26. Jefferies, R. L., 1972, Aspects of salt-marsh ecology with particular reference to inorganic plant nutrition, in: “The Estuarine Environment, ” R. S. K. Barnes and J. Green, eds., Elsevier, Amsterdam.Google Scholar
  27. Jefferies, R. L., 1977, Growth responses of coastal halophytes to inorganic nitrogen, J. Ecol., 65: 847.CrossRefGoogle Scholar
  28. Jefferies, R. L., Davy, A. J., and Rudmik, T., 1979, The growth strategies of coastal halophytes, in: “Ecological Processes in Coastal Environments,” R. L. Jefferies and A. J. Davy, eds.., Blackwell Scientific Publications, Oxford.Google Scholar
  29. Jefferies, R. L., Rudmik, T., and Dillon, E. M., 1979, The responese of halophytes to high salinities and low water potentials, Plant Physiol., 64: 989.PubMedCrossRefGoogle Scholar
  30. Kappen, L., 1969, Frostresistenz einheimischer Halophyten in Beziehung zu ihrem Salz-, Zucker- und Wassergehalt im Sommer und im Winter, Flora Abt. B., 158: 232.Google Scholar
  31. Kappen, L. and Maier, M., 1979, Bedeutung einiger nichtflüchtiger Carbonsäuren für die Frostresistenz des Halophyten Halimione portulacoides unter dem Einfluss verschieden hoher Kochsalz-belastung, Oecologia, 12: 241.Google Scholar
  32. Kappen, L. and Maier, M., 1979, Cellular compartmentalization of salt ions and protective agents with respect to freezing tolerance of leaves. Investigations with the halophyte Halimione portu¬lacoides (L.) Aellen, Oecologia, 38: 303.CrossRefGoogle Scholar
  33. Kauss, H., 1977, Biochemistry of osmotic regulation, in: International Review of Biochemistry, Plant Biochemistry II, Vol, 13, D. H. Northcote, ed., University Park Press, Baltimore.Google Scholar
  34. Kauss, H., 1978, Osmotic regulation in algae, Prog. in Phytochem., 5: 1.Google Scholar
  35. Lanyi, J. K., 1974, Salt-dependent properties of proteins from extremely halophytic bacteria, Bact. Rev., 38: 272.PubMedGoogle Scholar
  36. Larher, F. and Haemlin, J., 1975a, L’acide dimethylsulfonium-3 pro- panoique de Spartina anglica, Phytochem., 16: 2019.CrossRefGoogle Scholar
  37. Larher, F. and Haemlin, J., 1975b, L’acide-trimethylaminoproionique des rameau de Limonium vulgare Mill., Phytochem., 14:205,CrossRefGoogle Scholar
  38. Miflin, B. J. and Lea, P. J., 1977, Amino acid metabolism, Ann. Rev. Plant Physiol., 28:299. Odum, E. P., 1974, Halophytes, energetics and ecosystems, in: “Ecology of Halophytes,” R. J. Reinold and W. H. Queen, eds., Academic Press, New York.Google Scholar
  39. Osmond, C. B., 1968, Acid metabolism in Atriplex, Aust. J. Biol., Sci., 21: 1119.Google Scholar
  40. Phillips, J., 1972, Chemical processes in estuaries, in: “The Estuarine Environment,” R. S. K. Barnes and J. Green, eds., Elsevier, Amsterdam.Google Scholar
  41. Pollard, A. and Wyn Jones, R. G., 1979, Enzyme activities in concentrated solutions of glycinebetaine and other solutes, Planta, 144: 291.CrossRefGoogle Scholar
  42. Prosser, C. L., 1973, “Comparative Animal Physiology,” 3rd Ed., W. B. Saunders, Philadelphia.Google Scholar
  43. Rice, T. B. and Carlson, P. S., 1975, Genetic analysis and plant improvement, Ann. Rev. Plant Physiol., 26: 279.CrossRefGoogle Scholar
  44. Rozema, J., 1979, Population dynamics and ecophysiological adaptations of some coastal members of the Juncaceae and Gramineae, in: “Ecological Processes in Coastal Environments,” R. L. Jefferies and A. J. Davy, eds., Blackwell Scientific Publications, Oxford.Google Scholar
  45. Rozema, J., Buizer, D. A. G., and Fabritius, H. E., 1978, Population dynamics of Glaux maritima and ecophysiological adaptations to salinity and inundation, Oikos, 30: 539.CrossRefGoogle Scholar
  46. Schobert, B., 1977, Is there an osmotic regulatory mechanism in algae and higher plants ?, J. Theor. Biol., 68: 17.PubMedCrossRefGoogle Scholar
  47. Schobert, B. and Tzchesche, H., 1978, Unusual solution properties of proline and its interaction with proteins, Biochim. Biophys. Acta, 541: 270.CrossRefGoogle Scholar
  48. Smith, P. K. and Smith, E. R. B., 1940, Thermodynamic properties of solutions of amino acids and related substances: V. The activities of some hydroxy- and n-methylamino acids and proline in aqueous solution at twenty-five degrees, J. Biol. Chem., 132: 57.Google Scholar
  49. Storey, R. and Wyn Jones, R. G., 1975, Betaine and choline levels in plants and their relationship to NaCl stress, Plant Science Letters, 4: 161.CrossRefGoogle Scholar
  50. Storey, R., Ahmad, A., and Wyn Jones, R. G., 1977, Taxonomic and ecological aspects of the distribution of glycinebetaine and related compounds in plants, Oecologia, 27: 319.CrossRefGoogle Scholar
  51. Storey, R. and Wyn Jones, R. G., 1978, Salt stress and comparative physiology in the Gramineae. III. Effect of salinity upon ion relations and glycinebetaine and proline levels in Spartina x townsendii, Aust. J. Plant Physiol., 5: 831.Google Scholar
  52. Storey, R. and Wyn Jones, R. G., 1979, Responses of Atriplex spongiosa and Suaeda monoica to salinity, Plant Physiol., 65: 156.CrossRefGoogle Scholar
  53. Stewart, C. R., 1972, Proline content and metabolism during rehydration of wilted excised leaves in the dark, Plant Physiol., 50: 679.PubMedCrossRefGoogle Scholar
  54. Stewart, C. R., Boggess, S. F., Aspinall, D., and Paleg, L. G., 1977, Inhibition of proline oxidation by water stress, Plant Physiol., 59: 930.PubMedCrossRefGoogle Scholar
  55. Stewart, G. R. and Lee, J. A., 1974, The role of proline accumulation in halophytes, Planta, 120: 279.CrossRefGoogle Scholar
  56. Stewart, G. R., Larher, F., Ahmad, I., and Lee, J. A., 1979, Nitrogen metabolism and salt tolerance in halophytes, in.: “Ecological Processes in Coastal Enviornments,” R. L. Jefferies and A. J. Davy, eds., Blackwell Scientific Publications, Oxford.Google Scholar
  57. Treichel, S., 1975, Der Einfluss von NaCl auf die Prolinkonzentration verschiedener Halophyten, Zeit. für Pflanzenphysiol., 76: 56.Google Scholar
  58. Turner, R. E., 1976, Geographic variations in salt marsh macro-phyte production: a review, Contrib. Mar. Sci., 20: 47.Google Scholar
  59. Valiela, I. and Teal, J. M., 1979, The nitrogen budget of a salt marsh ecosystem, Nature, 280: 652.CrossRefGoogle Scholar
  60. Weast, R. C., ed., 1976, Handbook of Chemistry and Physics, 57th Edition, C.R.C. Press, Cleveland, Ohio.Google Scholar
  61. Wyn Jones, R. G., Storey, R., Leigh, R. A., Ahmad, N., and Pollard, A., 1977a, A hypothesis on cytbplasmic osmoregulation, in: “Regulation of Cell Membrane Activities in Plants,” E. Marre and O. Ciferri, eds., North Holland, Amsterdam.Google Scholar
  62. Wyn Jones, R. G., Storey, R., and Pollard, A., 1977b, Ionic and osmotic regulation in plants, particularly halophytes, in: “Transmembrane ionic exchanges in plants,” M. Thellier, A. Monnier, M. Demarty, and J. Dainty, eds., CNRS, Paris.Google Scholar
  63. Wyn Jones, R. G. and Storey, R., 1978, Salt stress and comparative physiology in the Gramineae. IV. Comparison of salt stress in Spartina x townsendii and three barley cultivars, Aust. J. Plant Physiol., 5: 839.Google Scholar
  64. Wyn Jones, R. G., Brady, C. J., and Speirs, J., 1979, Ionic and osmotic relations in plant cells, in: “Recent Advances in the Biochemistry of Cereals,” D. L. Laidman and R. G. Wyn Jones, eds., Academic Press, New York.Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • R. L. Jefferies
    • 1
  1. 1.Department of BotanyUniversity of TorontoTorontoCanada

Personalised recommendations