Advertisement

Topological Excitations and Quark Confinement

  • Z. F. Ezawa
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 55)

Abstract

It is argued that topological excitations in field variables lead to electric charge confinement in a condensed phase of magnetic (topological) charge. This may occur by way of vacuum tunneling due to instantons or a phase transition due to virtual creations of topological solitons. We propose to study this mechanism by investigating the dual Lagrangian which is a functional Fourier transformation of the original Lagrangian. This is because the perturbative vacuum of the dual Lagrangian is the physical vacuum of the original Lagrangian in the presence of topological excitations. As explicit examples, we analyze the Abelian Higgs model in 1+1 dimensions and the Georgi-Glashow models in 2+1 dimensions as well as 3+1 dimensions. These models are shown to give an ideal realization of the electric quark confinement mechanism conjectured by ’t Hooft and Mandelstam.

Keywords

Domain Wall Topological Charge Strong Coupling Limit Physical Vacuum Topological Soliton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. B. Nielsen and P. Olesen, Nucl.Phys, B61, 45 (1973).ADSCrossRefGoogle Scholar
  2. 2.
    G.’t Hooft, Nucl.Phys. B79, 276 (1974). A. M. Polyakov, JETP Letters 20, 194 (1974).ADSCrossRefGoogle Scholar
  3. 3.
    A. M. Polyakov, Phys.Letters 59B, 82 (1975). A. A. Belavin et al., Phys.Letters 59B, 85 (1975).MathSciNetADSGoogle Scholar
  4. 4.
    S. Mandelstam, Phys.Rev, D11, 3026 (1975).MathSciNetADSGoogle Scholar
  5. 5.
    Z. F. Ezawa, Phys.Rev. D18, 2091 (1978); Phys.Letters 82B, 426 (1979).ADSGoogle Scholar
  6. 6.
    Z. F. Ezawa, Phys.Letters 8IB, 325 (1979).Google Scholar
  7. 7.
    C. G. Callan et al., Phys.Lett. 63B 334 (1976) 66B, 375 (1977).ADSGoogle Scholar
  8. 8.
    Y. Nambu, Phys. Rev. D10, 4262 (1974).ADSCrossRefGoogle Scholar
  9. 9.
    S. Mandelstam, Phys.Letters 53B, 476 (1974). Z. F. Ezawa and H. C. Tze, Phys.Rev. D14, 1006 (1976).Google Scholar
  10. 10.
    S. Mandelstam, Phys.Reports 23, 245 (1976).ADSCrossRefGoogle Scholar
  11. 11.
    G. ’t Hooft, Nucl.Phys. B138, 1 (1978).ADSCrossRefGoogle Scholar
  12. 12.
    Z. F. Ezawa, Nucl.Phys., to be published.Google Scholar
  13. 13.
    Z. F. Ezawa, Phys. Letters, 85B, 87 (1979).MathSciNetADSGoogle Scholar
  14. 14.
    A. M. Polyakov, Nucl.Phys. B120, 429 (1977).MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    Z. F. Ezawa, Phys.Letters, to be published.Google Scholar
  16. 16.
    S. Mandelstam, Charge-Monopole Duality and the Phases of Non-Abelian Gauge Theories, November 1978.Google Scholar
  17. 17.
    T. Banks, R. Myerson and J. Kogut, Nucl.Phys, B129, 493 (1977). R. Savit, Phys.Rev. B17, 1340 (1978). M. E. Peskin, Ann.Phys. 113, 122 (1978).ADSCrossRefGoogle Scholar
  18. 18.
    S. Coleman et al., Ann.Phys. 93, 267 (1975).ADSCrossRefGoogle Scholar
  19. 19.
    K. D. Rothe and J. A. Swieca, Phys.Rev, D15, 541 (1977). Z. F. Ezawa, Nuovo Cimento 51A, 187 (1979).ADSGoogle Scholar
  20. 20.
    Z. F. Ezawa and H. C. Tze, J.Math. Phys. 17, 2228 (1976).MathSciNetADSCrossRefGoogle Scholar
  21. 21.
    A. Arafune et al., J.Math.Phys. 16, 433 (1975).MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • Z. F. Ezawa
    • 1
  1. 1.Max-Planck-Institut für Physik und AstrophysikMünchenGermany

Personalised recommendations