Advertisement

On Nonlocal Charges in Quantum Field Theory

  • Jan T. Łopuszanski
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 55)

Abstract

The topics of my lecture are the nonlocal charges. Before I shall enter into the explanation of this notion of somewhat misleading name (it will turn out that the local properties of nonlocal charges are quite important in my presentation) let me say a few words about conventional charges in the context of symmetries in quantum field theory.

Keywords

Scalar Field Local Charge Spinorial Charge Covariant Current Arbitrary Real Constant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. J. Borchers, Nouvo Cimento 15, 784 (1960); H. Araki and R. Haag, Comm. Math. Phys. 4, 77 (1967).MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    D. Kestler, D. W. Robinson and A. Swieca, Comm. Math. Phys. 2, 108 (1966); B. Schroer and J. Stichel, Comm. Math. Phys. 3, 258 (1966).MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    W. D. Gerber and H. Reeh, J. Math. Phys. 19, 59 (1978) J. T. Lopuszanski, Comm. Math. Phys. 38, 317 (1974).ADSCrossRefGoogle Scholar
  4. 4.
    S. O. Aks, J. Math. Phys. 6, 516 (1965); A. Martin, unpublished result.MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    K. Pohlmeyer, Comm. Math. Phys. 46, 207 (1976); M. Lüscher and K. Pohlmeyer, Nucl. Phys. B137, 46 (1978); M. Lüscher, Nucl. Phys. B135, 1 (1978); A. B. Zamolodchikov and Al. B. Zamolodchikov, Nucl. Phys. B133, 525 ( 1978 ); C. H. Woo, preprint ZIF Bielefeld 1979.Google Scholar
  6. 6.
    K. G. Wilson and W. Zimmermann, Comm. Math. Phys. 24, 87 (1972).MathSciNetADSMATHCrossRefGoogle Scholar
  7. 7.
    D. Buchholz and J. T. Lopuszanski, Letters Math. Phys. 3, 175 (1979).MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    D. Buchholz, Proceedings of the International Conference on Operator Algebra, Ideas and Their Application in Theoretical Physics, Leipzig, 1977.Google Scholar
  9. 9.
    H. J. Borchers, Nouvo Cimento 15 784 (1960).MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    J. T. Lopuszanski, Comm. Math. Phys. 12, 80 (1969), 14, 158 (1969), Springer Tracts in Modern Physics Springer Verlag, Berin-Heidelberg, 1970, Vol. 52; L. J. Landau, Comm. Math. Phys. 17, 156 (1970); K. K.aus and L. J. Landau, Comm. Math. Phys. 24, 243 (1972).Google Scholar
  11. 11.
    J. T. Lopuszanski and J. Lukierski, Reports Math. Phys. 1, 265 (1971).MathSciNetCrossRefGoogle Scholar
  12. 12.
    S. Coleman and J. Mandula, Phys. Rev. 159, 1251 (1967); J. T. Lopuszanski, J. Math. Phys. 12, 2401 (1971); W. D. Gerber and H. Reeh, preprint Göttingen, 1978.Google Scholar
  13. 13.
    R. Haag, J. T. Lopuszanski and M. Sohnius, Nucl. Phys. B88, 257 (1975).MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    C. A. Orzelesi, J. Sucher, C. H. Woo, Phys. Rev. Letters 21, 1550 (1958); C. A. Orzelesi, Revs. Mod. Phys. 42, 381 (1970).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • Jan T. Łopuszanski
    • 1
  1. 1.Institute of Theoretical PhysicsUniversity of WrocławWrocławPoland

Personalised recommendations