Gravitational Instantons, G-Indextheorem and Non-Local Boundary Terms

  • H. Römer
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 55)


In the last few years, Euclidean functional integrals have turned out to be a very useful tool both technically and - more important - also conceptually in relativistic quantum field theory on flat space-time.


Discrete Subgroup Index Theorem Lens Space Euclidean Action Relativistic Quantum Field Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    See e.g. J. M. Singer, Cargese lectures 1979, for a review of Yang-Mills instantons.Google Scholar
  2. 2.
    For a review see S. W. Hawking: Euclidean Quantum Gravity, D.A.M.P.T. preprint 1979.Google Scholar
  3. 3.
    G. W. Gibbons, S. W. Hawking, Phys. Rev. D15m 2752 (1977).MathSciNetADSGoogle Scholar
  4. 4.
    G. W. Gibbons, S. W. Hawking, M. J. Perry, Nucl. Phys. B (1979) to appear.Google Scholar
  5. 5.
    S. W. Hawking, D.A.M.T.P. preprint 1979.Google Scholar
  6. 6.
    G. W. Gibbons, C. N. Pope, “The Positive Action Conjecture and Asymptotically Euclidean Metrics in Quantum Gravity”, D.A.M.T.P. preprint and Comm. Math. Phys. (1979) to appear.Google Scholar
  7. 7.
    G. W. Gibbons, S. W. Hawking, Phys. Lett. 75B, 430 (1978).Google Scholar
  8. 8.
    G. W. Gibbons, C. N. Pope, H. Römer: “Index Theorem Boundary Terms for Gravitational Instantons” D.A.M.T.P. preprint 1979. This paper also contains a thorough discussion of the various boundary conditions.Google Scholar
  9. 9.
    T. Eguchi, A. Y. Hanson, Phys. Lett. 74B, 249 (1978).CrossRefGoogle Scholar
  10. 10.
    N. Hitchin: “Polygons and Gravitons” to appear in Math. Proc. Comb. Phil. Soc.Google Scholar
  11. 11.
    S. W. Hawking, Phys. Lett. 60A, 81 (1977).MathSciNetCrossRefGoogle Scholar
  12. 12.
    M. F. Atiyah, J. M. Singer, Bull. Ann. Math. Soc. 69, 422 (1963); Ann. Math. 87, 484 and 546 (1968).MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    H. Römer, Phys. Lett. 83B, 172 (1979).CrossRefGoogle Scholar
  14. 14.
    M. F. Atiyah, W. K. Patodi, J. M. Singer, Bull. London Math. Soc. 5, 229 (1973); Math. Proc. Cambridge Philos. Soc. 77, 43 (1975); 78 405 (1975); 79, 71 (1976).MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    R. Palais, ed., Seminar on the Atiyah-Singer Index Theorem, Annals of Math. Studies No. 76 (Princeton University Press 1965 ).Google Scholar
  16. 16.
    N. K. Nielson, H. Römer, B. Schroer, Nucl. Phys. B136, 475 (1978) and references therein.ADSCrossRefGoogle Scholar
  17. 17.
    M. F. Atiya, J. B. Segal, Ann. Math. 87, 531 (1968).CrossRefGoogle Scholar
  18. 18.
    S. M. Christensen, M. Y. Duff, Phys. Lett. 76B, 571 (1978).CrossRefGoogle Scholar
  19. 19.
    M. T. Grisaru, N. K. Nielson, H. Römer, P. van Nieuwenhuizen, Nucl. Phys. B140, 477 (1978).ADSCrossRefGoogle Scholar
  20. 20.
    A. J. Hanson, H. Römer, Phys. Lett. 80B, 58 (1978).CrossRefGoogle Scholar
  21. 21.
    A. Lichnerowicz, Comptes Rendues 257A, 5 (1968).Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • H. Römer
    • 1
  1. 1.Fakultät für PhysikUniversität FreiburgFreiburg/Br.Deutschland

Personalised recommendations