Skip to main content

Chiral Properties of Quantum Chromodynamics

  • Chapter
Book cover Field Theoretical Methods in Particle Physics

Part of the book series: NATO Advanced Study Institutes Series ((NSSB,volume 55))

Abstract

The success of PCAC and current algebra more than a decade ago was an important constraint on field-theoretic attempts to construct a realistic model of the strong interactions. Our best candidate, quantum chromodynamics (QCD), satisfies part of this requirement: Gell-Mann’s current commutators are valid for renormalized operators of the fully interacting theory. What is not clear is how to realize the approximate chiral SU(n)x SU(n) symmetry of the QCD Hamiltonian in the Nambu-Goldstone mode. The hadronic ground state (vacuum) should yield expectation values of quark mass operators which do not vanish in the chiral limit; for example, we should find

$$vac\,\left| {\bar u\,u} \right|vac> \, \ne \,o$$
((1.1))

for the up quark u. It is difficult to find a systematic expansion of the QCD generating functional in which the leading approximation exhibits the property (1.1). However, some progress can be made by assuming (1.1) to be true; then generally valid equations such as anomalous Ward identities give conditions which must be satisfied by any self-consistent expansion of QCD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. L. Glashow, in Hadrons and their Interactions Academic Press Inc. ( New York 1968 ), p. 83.

    Google Scholar 

  2. R. J. Crewther, “Status of the U(l) Problem”, in “Instantons in Field Theory”, Riv.Nuovo Cimento 2 No 8 (1979), p. 63.

    MathSciNet  Google Scholar 

  3. R. J. Crewther, Phys.Letters 7OB, 349 (1977).

    ADS  Google Scholar 

  4. G.’t Hooft, Phys.Rev.Letters 37, 8 (1976).

    Google Scholar 

  5. C. G. Callan, Jr., R. F. Dashen and D. J. Gross, Phys.Letters 63B, 334 (1976).

    Google Scholar 

  6. R. J. Crewther, Proceedings of the 1979 International Workshop on High-Energy Physics, Serpukhov (to be published).

    Google Scholar 

  7. R. J. Crewther, Univ.Bern preprint (to appear).

    Google Scholar 

  8. R. J. Crewther, “Effects of Topological Charge in Gauge Theories”, in “Facts and Prospects of Gauge Theories”, Schladming 1978, ed.P. Urban, Acta Phys.Austriaca Suppl. 19, 47 (1978).

    Google Scholar 

  9. P. Di Vecchia, G. Veneziano, and E. Witten, (to appear).

    Google Scholar 

  10. R. F. Dashen, Phys.Rev. D3, 1879 (1969).

    MathSciNet  Google Scholar 

  11. R. Jackiw and K. Johnson, Phys.Rev. 182, 1459 (1969).

    Article  ADS  Google Scholar 

  12. S. L. Adler and D. G. Boulware, Phys.Rev. 184, 1740 (1969).

    Article  ADS  Google Scholar 

  13. S. L. Adler, Phys.Rev. 177, 2426 (1969).

    Article  ADS  Google Scholar 

  14. W. A. Bardeen, Nucl.Phys. 75, 246 (1974).

    Article  ADS  Google Scholar 

  15. G.’t Hooft, Phys.Rev. D14, 3432 (1976); (E) D18, 2199 (1978).

    Google Scholar 

  16. V. Baluni, Phys.Rev. D19, 2227 (1979).

    ADS  Google Scholar 

  17. R. J. Crewther, P. Di Vecchia, G. Veneziano, and E. Witten, CERN preprint TH. 2735 (1979).

    Google Scholar 

  18. K. G. Wilson, Phys. Rev. 179, 1499 (1969).

    Article  MathSciNet  ADS  Google Scholar 

  19. Y. Nambu and G. Jona-Lasinio, Phys. Rev. 122, 345 (1961).

    Article  ADS  Google Scholar 

  20. R. D. Peccei and H. R. Quinn, Phys. Rev. Letters 38, 1440 (1977); Phys. Rev. D16, 1791 (1977).

    ADS  Google Scholar 

  21. Y. Hosotani, Prog. Theor. Phys. 61, 1452 (1979).

    Google Scholar 

  22. W. F. Palmer and S. S. Pinsky, Ohio State preprint COO-1545-254 (1979).

    Google Scholar 

  23. J. Kogut and L. Susskind, Phys. Rev. D11, 3594 (1975).

    ADS  Google Scholar 

  24. s. P. de Alwis, Phys. Letters 86B, 67 (1979).

    Google Scholar 

  25. M. Ida, Prog. Theor. Phys. 61, 618, 1784 (1979); Kyoto University preprint RIFP-375 (1979).

    Article  MathSciNet  ADS  Google Scholar 

  26. s. L. Glashow and S. Weinberg, Phys. Rev. Letters 20, 224 (1968).

    Article  ADS  Google Scholar 

  27. M. Gell-Mann, R. J. Oakes and B. Renner, Phys. Rev. 175, 2195 (1968).

    Article  ADS  Google Scholar 

  28. S. L. Glashow, R. Jackiw and S.-S. Shei, Phys. Rev. 187, 1916 (1969).

    Article  ADS  Google Scholar 

  29. M. Gell-Mann, Honolulu 1969, eds. W. A. Simmonds and S. F. Tuan, Western Periodicals (Los Angeles, 1970 ), p. 1.

    Google Scholar 

  30. J. Lowenstein and J. A. Swieca, Ann.Phys. (N.Y.) 68, 172 (1971).

    Article  MathSciNet  ADS  Google Scholar 

  31. D. G. Caldi, Phys.Rev.Lett. 39, 121 (1977).

    Article  ADS  Google Scholar 

  32. V. A. Fateyev, I. V. Frolov and A. S. Schwarz, preprint of Landau Institute for Theoretical Physics (1979); B. B. rg and M. Lüscher, Comm.Math.Phys. 69, 57 (1979).

    Google Scholar 

  33. S. Coleman, 1977 Erice Lectures, Harvard preprint HUTP-78/A004 (1978).

    Google Scholar 

  34. K. Uhlenbeck, quoted by M. Atiyah.

    Google Scholar 

  35. J. Nuyts, Phys.Rev.Lett. 26, 1604 (1971); 27, 361 (E) (1971).

    MathSciNet  Google Scholar 

  36. M. A. Shifman, A. I. Vainshtein, and V. I. Zacharov, preprint ITEP-64 (1979).

    Google Scholar 

  37. E. Witten, Nucl.Phys. B149, 285 (1979).

    Article  ADS  Google Scholar 

  38. N. K. Nielsen and B. Schroer, Nucl.Phys. B120, 62 (1977); Phys.Lett. 66B, 373 (1977).

    MathSciNet  Google Scholar 

  39. J. Kiskis, Phys.Rev. D16, 2535 (1977).

    MathSciNet  ADS  Google Scholar 

  40. S. Coleman, Ann.Phys. (N.Y.) 101, 239 (1976).

    Article  ADS  Google Scholar 

  41. M. Lüscher, Phys.Lett. 78B, 465 (1978); A. D’Adda, M. Lüscher and P. di Vecchia, Nucl.Phys. B146, 63 (1978); B152, 125 (1979).

    Google Scholar 

  42. A. A. Migdal, Phys.Lett. 80B, 275 (1979); 81B, 37 (1979).

    ADS  Google Scholar 

  43. M. B. Halpern, Phys.Rev. D16, 1798, 3515 (1977).

    ADS  Google Scholar 

  44. H. Kleinert, Phys.Lett. 62B, 429 (1976); Erice 1976, “Understanding the Fundamental Constituents of Matter”, ed. A. Zichichi (Plenum 1978), p. 289; Fortschr.Phys. 26, 565 (1978).

    ADS  Google Scholar 

  45. C. Lee and W. A. Bardeen, University of Michigan preprint

    Google Scholar 

  46. E. Witten, Nucl.Phys. B156, 269; Veneziano, Nucl. Phys. B159, 213 (1979); P di Vecchia, CERN preprint TH. 2680 (1979).

    Google Scholar 

  47. C. Rosenzweig, J. Schechter and G. Trahern, Syracuse University preprint COO-3533-148 (1979).

    Google Scholar 

  48. W. B. Dress et al., Phys. Rev. D15, 9 (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Plenum Press, New York

About this chapter

Cite this chapter

Crewther, R.J. (1980). Chiral Properties of Quantum Chromodynamics. In: Rühl, W. (eds) Field Theoretical Methods in Particle Physics. NATO Advanced Study Institutes Series, vol 55. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3722-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3722-5_21

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3724-9

  • Online ISBN: 978-1-4684-3722-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics