Gauge Fields on a Lattice Selected Topics II

  • Francesco Guerra
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 55)


Models of quantum gauge fields on a lattice, introduced some years ago by Wilson [15] and others, continue to provide interesting structures to study both from a physical and mathematical point of view. While their main motivation comes from elementary particle theory, in relation with the problem of infrared behaviour and quark confinement, these models, formulated in the Euclidean discrete version, provide also interesting examples of statistical mechanics systems, whose behaviour is completely different from the more familiar one of systems related to the conventional ferromagnetic structure of the Ising model.


Partition Function Ising Model Gauge Field Recursive Equation Cluster Expansion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Balian, J. M. Drouffe and C. Itzykson, Phys. Rev. D11, 209B (1975).Google Scholar
  2. 2.
    J. Bellissard and G. F. De Angelis, Gaussian Limit of Compact Spin Systems, Marseille-Salerno Preprint, 1979.Google Scholar
  3. 3.
    M. Creutz, L. Jacobs and C. Rebbi, Phys. Rev. Lett. 42, 1390 (1979), Monte Carlo Study of Abelian Lattice Gauge Theories, Brookhaven Preprint 1979, and following papers.ADSCrossRefGoogle Scholar
  4. 4.
    G. F. De Angelis, D. de Falco and F. Guerra, Lett. Nuovo Cimento 19, 55 (1977).CrossRefGoogle Scholar
  5. 5.
    G. F. De Angelis, D. de Falco, F. Guerra and R. Marra, Acta Physica Austriaca, Suppl. XIX, 205 (1978).Google Scholar
  6. 6.
    G. F. De Angelis, S. De Martino, S. De Siena, Reconstruction of Euclidean Fields from Plane Rotator Models, Phys. Rev. 1979, to appear.Google Scholar
  7. 7.
    J. Fröhlich, B. Simon and T. Spencer, Comm. Math. Phys. 50, 79 (1976).MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    J. Fröhlich, Lectures given at this Institute.Google Scholar
  9. 9.
    G. Gallavotti, F. Guerra and S. Miracle-Sole. A Comment to the Talk by E. Seiler, in: Mathematical Problems in Theoretical Physics, G. Dell’Antonio, S. Doplicher and G. Jona-Lasinio, eds., Springer Verlag, Berlin, Heidelberg (1978).Google Scholar
  10. 10.
    G. Immirzi, F. Geurra and R. Marra, Lett. Nuovo Cimento 23, 237 (1978) and paper in preparation.CrossRefGoogle Scholar
  11. 11.
    R. Marra and S. Miracle-Sole, Comm. Math. Phys. 67, 233 (1979).MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    R. A. Minlos and Ya. G. Sinai, Trans. Moscow Math Soc. 17, 237 (1967); 19, 121 (1968).Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • Francesco Guerra
    • 1
  1. 1.Institute of PhysicsUniversity of SalernoItaly

Personalised recommendations