High Energy Behavior of Nonabelian Gauge Theories

  • J. Bartels
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 55)


The high energy behavior (in the Regge limit) of nonabelian gauge theories is reviewed. After a general remark concerning the question to what extent the Regge limit can be approached within perturbation theory, we first review the reggeization of elementary particles within nonabelian gauge theories. Then the derivation of a unitary high energy description of a massive (= spontaneously broken) nonabelian gauge model is described, which results in a complete reggeon calculus. There is strong evidence that the zero mass limit of this reggeon calculus exists, thus giving rise to the hope that the Regge behavior in pure Yang-Mills theories (QCD) can be reached in this way. In the final part of these lectures two possible strategies for solving this reggeon calculus (both for the massive and the massless case) are outlined. One of them leads to a geometrical picture in which the distribution of the wee partons obeys a diffusion law. The other one makes contact with reggeon field theory and predicts that QCD in the high energy limit is decribed by critical reggeon field theory.


Partial Wave Vector Particle NONABELIAN Gauge Theory Impact Parameter Space High Energy Behavior 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Footnotes

  1. 1.
    For reviews of foundation and applications of perturbative QCD see, for example: J. Ellis, Lectures presented at the Les Houches Summer School 1976; H. D. Politzer, Physics Reports 14, 129 (1974).Google Scholar
  2. 2.
    For a discussion of this point I am grateful to Dr. J. Kwieczinsky from Cracov, Poland.Google Scholar
  3. 3.
    A comprehensive review can be found in H.D.I. Abarbanel, J.B. Bronzan, R.L.Sugar, and A.R.White, Physics Reports 21c, 121 (1975)Google Scholar
  4. 4.
    M. Moshe, Physics Reports 37c, 257 (1978) and references therein.MathSciNetADSGoogle Scholar
  5. 5.
    M. Gell-Mann and M.L. Goldberger, Phys. Rev. Letters 9, 275 (1962); M. Gell-Mann, M.L. Goldberger, F.E. Low, and F. Zachariasen, Phys. Letters 265 (1963); M. Gell-Mann, M. Goldberger, F.E. Low, E. Marx,and F. Zachariasen, Phys. Rev. 133,B, 145 (1964); M. Gell-Mann, M.L. Goldberger, F. E. Low, V.Singh, and F. Zachariasen, Phys. Rev. 133,B, 949 (1964),MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    S. Mandelstam, Phys. Rev. 137,B, 949 (1965).MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    H. Cheng and C.C. Lo, Phys. Lett. 57B, 177 (1975).CrossRefGoogle Scholar
  8. 8.
    M. T. Grisaru, Phys. Rev. D16, 1962 (1977); P.H. Dondi and H.R. Rubinstein, Phys. Rev. D18, 4819 (1978).Google Scholar
  9. 9.
    K. Bardakci and M.B. Halpern, Phys. Rev. D6, 696 (1972).ADSGoogle Scholar
  10. 10.
    L. F. Li, Phys. Rev. D9, 1723 (1974).MathSciNetADSGoogle Scholar
  11. 11.
    M. T. Grisaru, H.J.Schnitzer, and H.-S. Tsao, Phys. Rev. D8, 4498 (1973).ADSGoogle Scholar
  12. 12.
    M. T. Grisaru, H.J.Schnitzer, and H.-S. Tsao, Phys. Rev. D9, 2864 (1974).ADSGoogle Scholar
  13. 13.
    M. T. Grisaru and H.J. Schnitzer, Brandeis Preprint 1979.Google Scholar
  14. 14.
    L. Lukaszuk and L. Szymanowski, Preprint of Institute for Nuclear Research, Warsaw (1979).Google Scholar
  15. 15.
    H. Georgi and S.L. Glashow, Phys. Rev. Lett. 32, 438 (1974).ADSCrossRefGoogle Scholar
  16. 16.
    M. C. Bergere and C. de Calan, Saclay preprin~DPh -T/79-7.Google Scholar
  17. 17.
    H. P. Stapp, in Les Houches Lectures 1975 (North-Holland, Amsterdam) p. 159; A.R. White, ibid. p. 427.Google Scholar
  18. 18.
    V. N. Öribov, JETP 26, 414 (1968).Google Scholar
  19. 19.
    R. C. Brower, C. E. Detar,and J. Weis, Physics Reports 14c, 257 (1974).ADSCrossRefGoogle Scholar
  20. 20.
    J. Bartels, Phys. Rev. Dil, 2977 and 2989 (1975).Google Scholar
  21. 21.
    J. Bartels, Nucl. Phys. B151, 293 (1979).ADSCrossRefGoogle Scholar
  22. 22.
    L. N. Lipatov, Yadernaya Fiz. 23, 642 (1976).Google Scholar
  23. 23.
    E. A. Kuraev, L.N. Lipatov, V.S. Fadin, JETP 71, 840 (1976).Google Scholar
  24. 24.
    Ya.Ya. Balitsky, L.N. Lipatov, and V.S. Fadin in “Materials of the 14th Winter School of Leningrad Institute of Nuclear Research 1979”, p.109.Google Scholar
  25. 25.
    E. A. Kuraev, L.N. Lipatov, and V.S. Fadin, JETP 12, 377 (1977).MathSciNetGoogle Scholar
  26. 26.
    J. Bartels, in preparation.Google Scholar
  27. 27.
    V. N. Gribov in “Materials of the 8th Winter School of Leningrad Institute of Nuclear Research 1973”, p.5.Google Scholar
  28. 28.
    S.-J. Chang and S.-K. Ma, Phys. Rev. 188, 2385 (1969).ADSCrossRefGoogle Scholar
  29. 29.
    R. K. Ellis, H. Georgi, M. Machacek, H. D. Politzer, and G. G. Ross, CALT 68–684.Google Scholar
  30. 30.
    H. T. Nieh and Y. P. Yao, Phys. Rev, D13, 1082 (1976); B. M. McCoy and T. T. Wu, Phys, Rev, D12, 2357 (1976) and Phys. Rev. D13, 1076 (1976); L. Tyburski, Phys. Rev. Dl3, 1107 (1976).ADSGoogle Scholar
  31. 31.
    C. Y. Lo and H. Cheng, Phys. Rev. 13, 1131 (1976) and Phys. Rev. D15, 2959 (1977).Google Scholar
  32. 32.
    J. A. Dickinson, Phys. Rev. D16, 1863 (1977).ADSGoogle Scholar
  33. 33.
    H. Cheng, J. Dickinson, C. Y, Lo, K. Olausen and P. S. Yeung, Phys. Letters 76B, 129 (1978).ADSCrossRefGoogle Scholar
  34. 34.
    H. Cheng, J. A. Dickinson, C. Y. Lo, and K. Olausen, Preprint 1977 and Stony Brook I TP-SB 79–7.Google Scholar
  35. 35.
    P. Carruthers and F. Zachariasen, Physics Letters 62B, 338 (1976).CrossRefGoogle Scholar
  36. 36.
    J. B. Bronzan and R. L. Sugar, Phys. Rev. D17, 585 (1978).ADSGoogle Scholar
  37. 37.
    J. Bartels, unpublished.Google Scholar
  38. 38.
    V. N. Gribov, L. N. Lipatov, and G. V. Frolov, Yad. Fiz 12, 994 (1971); Sov. Journ. of Nucl. Phys, 12, 543 (71).Google Scholar
  39. 39.
    H. Cheng and T.T. Wu, Phys. Rev. D1, 2775 (1970) and Phys. Lett. 24, 1456 (1970).ADSGoogle Scholar
  40. 40.
    S.-J. Chang and P. M. Fishbane, Phys. Rev, V2, 1104 (1970).ADSGoogle Scholar
  41. 41.
    For a review of this solution see M. Le Bellac in “19th International conference on High Energy Physics, Tokyo 1978”, p. 153 and references therein.Google Scholar
  42. 42.
    A. R. White, Ref. TH 2592-CERN.Google Scholar
  43. 43.
    A. R. White, Ref. TH 2629-CERN.Google Scholar
  44. 44.
    It should be emphasized that this argument is not strictly based on t he reggeon calculus which has been derived in the previous section: there it was characterized as the go limit of the unitary S-matrix, and this approximation does not include renormalization of the parameters g, M2 etc. In order to use the concept of asymptotic freedom of g2(k2) for large values of transverse momentum, as it is done in Ref. 43, it is necessary to go beyond this approximation and include more nonleading terms. Whether this can be done in a consistent way, i. e. without destroying the subtle constraints of unitarity order by order in g2, remains to be seen. It may also be that some of these new contributions are nonperturbative, i. e. they cannot be expanded in powers of g2 at all.Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • J. Bartels
    • 1
  1. 1.II. Institut für Theoretische PhysikUniversität HamburgDeutschland

Personalised recommendations