Skip to main content

High Energy Behavior of Nonabelian Gauge Theories

  • Chapter
  • 145 Accesses

Part of the book series: NATO Advanced Study Institutes Series ((NSSB,volume 55))

Abstract

The high energy behavior (in the Regge limit) of nonabelian gauge theories is reviewed. After a general remark concerning the question to what extent the Regge limit can be approached within perturbation theory, we first review the reggeization of elementary particles within nonabelian gauge theories. Then the derivation of a unitary high energy description of a massive (= spontaneously broken) nonabelian gauge model is described, which results in a complete reggeon calculus. There is strong evidence that the zero mass limit of this reggeon calculus exists, thus giving rise to the hope that the Regge behavior in pure Yang-Mills theories (QCD) can be reached in this way. In the final part of these lectures two possible strategies for solving this reggeon calculus (both for the massive and the massless case) are outlined. One of them leads to a geometrical picture in which the distribution of the wee partons obeys a diffusion law. The other one makes contact with reggeon field theory and predicts that QCD in the high energy limit is decribed by critical reggeon field theory.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Footnotes

  1. For reviews of foundation and applications of perturbative QCD see, for example: J. Ellis, Lectures presented at the Les Houches Summer School 1976; H. D. Politzer, Physics Reports 14, 129 (1974).

    Google Scholar 

  2. For a discussion of this point I am grateful to Dr. J. Kwieczinsky from Cracov, Poland.

    Google Scholar 

  3. A comprehensive review can be found in H.D.I. Abarbanel, J.B. Bronzan, R.L.Sugar, and A.R.White, Physics Reports 21c, 121 (1975)

    Google Scholar 

  4. M. Moshe, Physics Reports 37c, 257 (1978) and references therein.

    MathSciNet  ADS  Google Scholar 

  5. M. Gell-Mann and M.L. Goldberger, Phys. Rev. Letters 9, 275 (1962); M. Gell-Mann, M.L. Goldberger, F.E. Low, and F. Zachariasen, Phys. Letters 265 (1963); M. Gell-Mann, M. Goldberger, F.E. Low, E. Marx,and F. Zachariasen, Phys. Rev. 133,B, 145 (1964); M. Gell-Mann, M.L. Goldberger, F. E. Low, V.Singh, and F. Zachariasen, Phys. Rev. 133,B, 949 (1964),

    Article  MathSciNet  ADS  Google Scholar 

  6. S. Mandelstam, Phys. Rev. 137,B, 949 (1965).

    Article  MathSciNet  ADS  Google Scholar 

  7. H. Cheng and C.C. Lo, Phys. Lett. 57B, 177 (1975).

    Article  Google Scholar 

  8. M. T. Grisaru, Phys. Rev. D16, 1962 (1977); P.H. Dondi and H.R. Rubinstein, Phys. Rev. D18, 4819 (1978).

    Google Scholar 

  9. K. Bardakci and M.B. Halpern, Phys. Rev. D6, 696 (1972).

    ADS  Google Scholar 

  10. L. F. Li, Phys. Rev. D9, 1723 (1974).

    MathSciNet  ADS  Google Scholar 

  11. M. T. Grisaru, H.J.Schnitzer, and H.-S. Tsao, Phys. Rev. D8, 4498 (1973).

    ADS  Google Scholar 

  12. M. T. Grisaru, H.J.Schnitzer, and H.-S. Tsao, Phys. Rev. D9, 2864 (1974).

    ADS  Google Scholar 

  13. M. T. Grisaru and H.J. Schnitzer, Brandeis Preprint 1979.

    Google Scholar 

  14. L. Lukaszuk and L. Szymanowski, Preprint of Institute for Nuclear Research, Warsaw (1979).

    Google Scholar 

  15. H. Georgi and S.L. Glashow, Phys. Rev. Lett. 32, 438 (1974).

    Article  ADS  Google Scholar 

  16. M. C. Bergere and C. de Calan, Saclay preprin~DPh -T/79-7.

    Google Scholar 

  17. H. P. Stapp, in Les Houches Lectures 1975 (North-Holland, Amsterdam) p. 159; A.R. White, ibid. p. 427.

    Google Scholar 

  18. V. N. Öribov, JETP 26, 414 (1968).

    Google Scholar 

  19. R. C. Brower, C. E. Detar,and J. Weis, Physics Reports 14c, 257 (1974).

    Article  ADS  Google Scholar 

  20. J. Bartels, Phys. Rev. Dil, 2977 and 2989 (1975).

    Google Scholar 

  21. J. Bartels, Nucl. Phys. B151, 293 (1979).

    Article  ADS  Google Scholar 

  22. L. N. Lipatov, Yadernaya Fiz. 23, 642 (1976).

    Google Scholar 

  23. E. A. Kuraev, L.N. Lipatov, V.S. Fadin, JETP 71, 840 (1976).

    Google Scholar 

  24. Ya.Ya. Balitsky, L.N. Lipatov, and V.S. Fadin in “Materials of the 14th Winter School of Leningrad Institute of Nuclear Research 1979”, p.109.

    Google Scholar 

  25. E. A. Kuraev, L.N. Lipatov, and V.S. Fadin, JETP 12, 377 (1977).

    MathSciNet  Google Scholar 

  26. J. Bartels, in preparation.

    Google Scholar 

  27. V. N. Gribov in “Materials of the 8th Winter School of Leningrad Institute of Nuclear Research 1973”, p.5.

    Google Scholar 

  28. S.-J. Chang and S.-K. Ma, Phys. Rev. 188, 2385 (1969).

    Article  ADS  Google Scholar 

  29. R. K. Ellis, H. Georgi, M. Machacek, H. D. Politzer, and G. G. Ross, CALT 68–684.

    Google Scholar 

  30. H. T. Nieh and Y. P. Yao, Phys. Rev, D13, 1082 (1976); B. M. McCoy and T. T. Wu, Phys, Rev, D12, 2357 (1976) and Phys. Rev. D13, 1076 (1976); L. Tyburski, Phys. Rev. Dl3, 1107 (1976).

    ADS  Google Scholar 

  31. C. Y. Lo and H. Cheng, Phys. Rev. 13, 1131 (1976) and Phys. Rev. D15, 2959 (1977).

    Google Scholar 

  32. J. A. Dickinson, Phys. Rev. D16, 1863 (1977).

    ADS  Google Scholar 

  33. H. Cheng, J. Dickinson, C. Y, Lo, K. Olausen and P. S. Yeung, Phys. Letters 76B, 129 (1978).

    Article  ADS  Google Scholar 

  34. H. Cheng, J. A. Dickinson, C. Y. Lo, and K. Olausen, Preprint 1977 and Stony Brook I TP-SB 79–7.

    Google Scholar 

  35. P. Carruthers and F. Zachariasen, Physics Letters 62B, 338 (1976).

    Article  Google Scholar 

  36. J. B. Bronzan and R. L. Sugar, Phys. Rev. D17, 585 (1978).

    ADS  Google Scholar 

  37. J. Bartels, unpublished.

    Google Scholar 

  38. V. N. Gribov, L. N. Lipatov, and G. V. Frolov, Yad. Fiz 12, 994 (1971); Sov. Journ. of Nucl. Phys, 12, 543 (71).

    Google Scholar 

  39. H. Cheng and T.T. Wu, Phys. Rev. D1, 2775 (1970) and Phys. Lett. 24, 1456 (1970).

    ADS  Google Scholar 

  40. S.-J. Chang and P. M. Fishbane, Phys. Rev, V2, 1104 (1970).

    ADS  Google Scholar 

  41. For a review of this solution see M. Le Bellac in “19th International conference on High Energy Physics, Tokyo 1978”, p. 153 and references therein.

    Google Scholar 

  42. A. R. White, Ref. TH 2592-CERN.

    Google Scholar 

  43. A. R. White, Ref. TH 2629-CERN.

    Google Scholar 

  44. It should be emphasized that this argument is not strictly based on t he reggeon calculus which has been derived in the previous section: there it was characterized as the go limit of the unitary S-matrix, and this approximation does not include renormalization of the parameters g, M2 etc. In order to use the concept of asymptotic freedom of g2(k2) for large values of transverse momentum, as it is done in Ref. 43, it is necessary to go beyond this approximation and include more nonleading terms. Whether this can be done in a consistent way, i. e. without destroying the subtle constraints of unitarity order by order in g2, remains to be seen. It may also be that some of these new contributions are nonperturbative, i. e. they cannot be expanded in powers of g2 at all.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Plenum Press, New York

About this chapter

Cite this chapter

Bartels, J. (1980). High Energy Behavior of Nonabelian Gauge Theories. In: Rühl, W. (eds) Field Theoretical Methods in Particle Physics. NATO Advanced Study Institutes Series, vol 55. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3722-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3722-5_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3724-9

  • Online ISBN: 978-1-4684-3722-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics