Skip to main content

Part of the book series: NATO Advanced Study Institutes Series ((NSSB,volume 55))

Abstract

The following two main reasons justify the recent vivid interest in σ-models:

  1. i)

    In O(N) σ-models (in dimension d = N − 1) and the two-dimensional CP(n) σ-models *) one can introduce the topological quantum numbers and instantons as in four-dimension- al Yang-Mills theories.

  2. ii)

    The classical dynamics of the large class of σ-models (including O(N) and CP(n)) is determined by the presence of an infinite number of conserved nonlocal charges [5–8]. One expects that the formalism of σ-models may provide a hint of how to eventually treat the Yang-Mills theory as a completely integrable four-dimensional system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. E. Zahkharov and A. W. Michailov, Zh.Eksp. and Teor.Fiz. 74, (1978) (in Russian).

    Google Scholar 

  2. A. J. MacFarlane, Phys.Lett. 82B, 239 (1979).

    Google Scholar 

  3. E. Brezin, C. Itzykson, J. Zinn-Justin and J. B. Zuber, Phys.Lett. 82B, 442 (1979).

    Article  Google Scholar 

  4. A. M. Perelomov, Comm.Math.Phys. 63, 237 (1978).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. K. Pohlmeyer, Comm.Math.Phys. 46, 207 (1976).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. M. Lüscher and K. Pohlmeyer, Nucl.Phys. B137, 46 (1978).

    Article  ADS  Google Scholar 

  7. H. Eichenherr, Nucl.Phys. B146, 215 (1978).

    Article  ADS  Google Scholar 

  8. H. Eichenherr and M. Forger, Freiburg preprint 79 /2 (1979).

    Google Scholar 

  9. E. Gava and R. Jengo, Nucl.Phys. B140, 510 (1978).

    Article  ADS  Google Scholar 

  10. E. Gava, R. Jengo and C. Omero, Phys.Lett. 81B, 187 (1979).

    Article  Google Scholar 

  11. V. de Alfaro, S. Fubini and G. Furlan, CERN preprint TH-2584, (1978).

    Google Scholar 

  12. T. H. R. Skyrme, Proc. Roy. Soc. 260, 127 (1961).

    MathSciNet  MATH  Google Scholar 

  13. N. K. Pak and H. C. Tze, Ann.Phys. 117, 164 (1979).

    Article  MathSciNet  ADS  Google Scholar 

  14. M. Dubois-Violette and Y. Georgelin, Phys.Lett. 82B, 251 (1979).

    Article  Google Scholar 

  15. J. Fröhlich, A new look at generalized, non-linear a-models and Yang-Mills theory, IHES preprint, 1979.

    Google Scholar 

  16. A. d’Adda, P. Di Vecchia and M. Lüscher, Nucl.Phys. B146, 63 (1978).

    Article  ADS  Google Scholar 

  17. E. Witten, Nucl.Phys. B149, 285 (1979).

    Article  ADS  Google Scholar 

  18. M. Berger, Bull.Soc.Math.France 83, 279 (1955).

    MathSciNet  MATH  Google Scholar 

  19. H. Wakakuwa, “Differential Geometry”, in honour of K. Yano (Kinokuniya Book-Store Co., Ltd., Tokyo, 1972 ), p. 503.

    Google Scholar 

  20. M. Forger, Instantons in non-linear a-models, gauge theories and general relativity, FUB preprint, 1979.

    Google Scholar 

  21. V. Y. Krames, Trans.Am.Math.Soc. 122, 357 (1966).

    Article  Google Scholar 

  22. D. W. Alexandrov, Funkc.Anal. and Appl. 2, 11 (1968) (in Russian).

    Google Scholar 

  23. Y. C. Wong, Proc.Acad. Sci. USA 57, 589 (1967).

    Article  ADS  MATH  Google Scholar 

  24. A. Trautman, Int.J.Theor.Phys, 6, 561 (1977).

    Google Scholar 

  25. A. A. Slavnov, Teor. and Mat.Fiz. 10, 305 (1972).

    Google Scholar 

  26. M. F. Atiyah, N. J. Hitchin, V. G. Drinfeld and Yu. I. Manin, Phys.Lett. 65A, 185 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  27. E. F. Corrigan, D. B. Fairlie, P. Goddard and T. Templeton, Nucl.Phys. B140, 45 (1978).

    Article  Google Scholar 

  28. K. Wilson, Phys.Rev. 179, 1499 (1969).

    Article  MathSciNet  ADS  Google Scholar 

  29. M. S. Narasimhan and S. Ramanan, Ann.J.Math. Q3, 563 (1961).

    MathSciNet  Google Scholar 

  30. P. Di Vecchia and S. Ferrara, Nucl.Phys. B130, 93 (1977).

    Article  ADS  Google Scholar 

  31. E. Witten, Phys.Rev. 16, 2991 (1977).

    ADS  Google Scholar 

  32. J. Lukierski, Lett. in Math.Phys. 3, 135 (1979).

    Article  MathSciNet  ADS  Google Scholar 

  33. J. Lukierski, Quarks and fermionic geometry, Proc.4th Workshop on Hadronic Matter, Erice, October 1978, to be published by Plenum Press.

    Google Scholar 

  34. J. Lukierski and V. Rittenberg, Phys.Rev. 1S, 385 (1978).

    MathSciNet  Google Scholar 

  35. J. Lukierski, Talk given at the International Seminar on Non-Local QFT, Aluszta, April 1979.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Plenum Press, New York

About this chapter

Cite this chapter

Lukierski, J. (1980). Fourdimensional Quaternionic σ-Models. In: Rühl, W. (eds) Field Theoretical Methods in Particle Physics. NATO Advanced Study Institutes Series, vol 55. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3722-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3722-5_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3724-9

  • Online ISBN: 978-1-4684-3722-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics