Advertisement

Screening and Confinement in Soluble Models

  • J. A. Swieca
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 55)

Abstract

Features of screening and confinement are discussed in the Schwinger and chiral Gross-Neveu models.

Keywords

Pair Production Soluble Model Algebraic Identity Pure Gauge Theory Quark Confinement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. J. Rothe, K. D. Rothe and J. A. Swieca, Phys.Rev, D19, 3020 (1979).ADSGoogle Scholar
  2. 2.
    L. V. Belvedere, K. D. Rothe, B. Schroer and J. A. Swieca, Nucl.Phys. B153, 112 (1979).MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    V. Kurak and J. A, Swieca, Antiparticles as Bound States of Particles in the Factorized S-Matrix Framework, Phys.Letters to appear; R- Köberle, V. Kurak and J, A. Swieca, Phys.Rev. D20, 897 (1979).ADSGoogle Scholar
  4. 4.
    L. van Hove, Remarks on the Quark Confinement Problem, CERN preprint, 1978.Google Scholar
  5. 5.
    H. G. Dosch and V, F. Müller, Vacuum Polarization Effects in Lattice Gauge Theories, Heidelberg preprint 1979.Google Scholar
  6. 6.
    V. Kurak, B. Schroer and J. A. Swieca, Nucl.Phys, B134, 61 (1978); S. Coleman, Ann. of Phys. N.Y., 101, 239 (1976).Google Scholar
  7. 7.
    D. Gross and A. Neveu, Phys.Rev. D10, 3235 (1974).ADSGoogle Scholar
  8. 8.
    E. Witten, Harvard preprint HIUTP-78/A027.Google Scholar
  9. 9.
    J. A. Swieca, Fortschr. der Physik 25, 303 (1977).CrossRefGoogle Scholar
  10. 10.
    A. Neveu and N. Papanicolau, Comm.Math.Phys. 58, 31 (1978).MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    S. Shei, Phys.Rev. D14, 535 (1976).ADSGoogle Scholar
  12. 12.
    B. Berg and P. Weisz, Nucl.Phys. B146, 205 (1978).MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    E. Abdalla, B. Berg and P. Weisz, preprint DESY 79/04.Google Scholar
  14. 14.
    C. G. Callan, R. Dashen and D. Gross, Phys.Rev. D17, 2717 (1978); L. P. Kadanoff, Rev. Mod. Phys. 49, 267 (1977); A. M. Polyakov, Nucl.Phys. B120, 429 (1977).Google Scholar
  15. 15.
    S. Mandelstam, in: “Extended Systems in Field Theory”, J. L. Gervais and A. Neveu (eds.), Physics Reports 23C No. 3 (1976); G. ‘t Hooft, Nucl.Phys. B138, 1 (1978); E. Fradkin and L. Susskind, Phys.Rev. D17, 3637 ( 1978 ); F. Englert, Cargese Lectures 1977.Google Scholar
  16. 16.
    Y. Nambu, Phys.Rev. D10, 4262 (1974).ADSCrossRefGoogle Scholar
  17. 17.
    K. Wilson, Phys.Rev. D10, 2445 (1974); K. Kogut and L. Susskind, Phys.Rev. D11, 395 (1975).MathSciNetCrossRefGoogle Scholar
  18. 18.
    S. Coleman, R. Jackiw and L. Susskind, Ann.Phys. N. Y. 93, 267 (1975).ADSCrossRefGoogle Scholar
  19. 19.
    J. H. Lowenstein and J. A. Swieca, Ann.Phys.N.Y. 68, 172 (1971).MathSciNetADSCrossRefGoogle Scholar
  20. 20.
    S. Coleman, Ann.Phys. N.Y. 101, 239 (1976).ADSCrossRefGoogle Scholar
  21. 21.
    H. J. Rothe, K. D. Rothe and I. O. Stamatescu, Ann.Phys. N.Y. 105, 63 (1975); A. Casher, J. Kogut and L. Susskind, Phys.Rev. D10, 732 (1974).Google Scholar
  22. 22.
    B. Schroer and J. A. Swieca, Nucl.Phys. B121, 505 (1977).ADSCrossRefGoogle Scholar
  23. 23.
    S. Coleman, Commun.Math.Phys. 31, 259 (1973); H. Ezawa and J. A. Swieca, Comm.Math.Phys. 5, 330 (1967).MathSciNetCrossRefGoogle Scholar
  24. 24.
    V. L. Berezinski, Sov.Phys.JETP 32, 493 (1970); ibid 34, 610 (1971).ADSGoogle Scholar
  25. 25.
    J. M. Kosterlitz and D. J. Thouless, J.Phys. C6, 1181 (1973).ADSGoogle Scholar
  26. 26.
    S. Meyer and R. Trostl, Phys.Lett. 79B, 429 (1978).Google Scholar
  27. 27.
    A. B. Zamolodchikov, Comm. Math.Phys. 55, 183 (1977).MathSciNetADSCrossRefGoogle Scholar
  28. 28.
    M. Karowski, H. J. Thun, T. T. Truong and P. Weisz, Phys.Lett. 67B, 321 (1977); M. Karowski and H. J. Thun, Nucl.Phys. B130, 295 (1977).ADSCrossRefGoogle Scholar
  29. 29.
    A. B. Zamolodchikov and AI. B. Zamolodchikov, Nucl. Phys. B133, 525 (1977); Phys.Lett. 72B, 481 (1978).Google Scholar
  30. 30.
    R. Shankar and E. Witten, Nucl.Phys. B141, 349 (1978), Phys.Rev. D17, 2134 (1978).Google Scholar
  31. 31.
    S. Mandelstam, Phys. Rev. D11, 3026 (1975); M. B. Halpern, Phys.Rev. D12, 1684 (1975).MathSciNetGoogle Scholar
  32. 32.
    B. Schroer, Fortschr. der Physik 11, 1 (1963).MathSciNetCrossRefGoogle Scholar
  33. 33.
    H. Araki and R. Haag, Comm.Math.Phys. 4, 77 (1967).MathSciNetADSCrossRefGoogle Scholar
  34. 34.
    M. Sato, T. Miwa and M. Jimbo, RIMS preprint 207 (1976); B. Schroer and T. T. Truong, Nucl.Phys. B144, 80 (1978).ADSCrossRefGoogle Scholar
  35. 35.
    B. Berg, M. Karowski, V. Kurak and P. Weisz, Nucl.Phys. B134, 125 (1978).MathSciNetADSCrossRefGoogle Scholar
  36. 36.
    B. Schroer, T. T. Truong and P. Weisz, Phys.Lett. 63B, 422 (1976).Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • J. A. Swieca
    • 1
    • 2
  1. 1.Dep. de FisicaUniversidade Federal de São CarlosSão CarlosBrazil
  2. 2.Dep. de FisicaPUCRio de JaneiroBrazil

Personalised recommendations