The Bootstrap Program for 1+1 Dimensional Field Theoretic Models with Soliton Behaviour

  • M. Karowski
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 55)


A review is given of the present status of the bootstrap program for 1+1 dimensional field theoretic models with soliton behaviour. From the existence of infinitely many conservation laws, unitarity, crossing, “minimality”, internal symmetries, and some assumptions on the one particle spectrum first the exact S-matrix is derived explicitely. We repeat the procedure for the massive Thirring-model (alias Sine-Gordon) S-matrix starting with two fermion (alias soliton) scattering and then deriving the boundstate (alias breather) S-matrix. The same complete S-matrix is obtained by starting with the determination of the boson (breather) S-matrix and then deriving the boson-soliton and soliton-soliton scattering from the assumption that the soliton is a soliton-boson bound state. By means of the same procedure we obtain the Gross-Neveu S-matrix including the kink scattering. Then for some models generalized form factors and Green’s functions for the Z(2)-Ising model in the scaling limit are calculated.


Form Factor Ising Model Fundamental Fermion Bootstrap Program Generalize Form Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Karowski, H. J. Thun, T. T. Truong, P. Weisz, Phys.Lett. 67B, 321 (1977); A. B. and AI. B. Zamolodchikov, Nucl.Phys. B133, 525 (1978); Phys.Lett. 72B, 481 (1978); R. Shankar and E. Witten, Phys.Rev. D17, 2134 (1978); B. Berg and P. Weisz, Nucl.Phys B146, 205 (1978); V. Kurak and J. A. Swieca, Phys.Lett. 82B, 289 (1979); R. Köberle and J. A. Swieca, Factorizable Z(N) Models, S. Carlos preprint (1979).ADSGoogle Scholar
  2. 2.
    M. S. Ablowitz, O. J. Kaup, A. C. Newell, N. Segur, Phys.Rev. Lett. 31, 125 (1973); L. A. Takhtadzhyun and L. D. Faddeev, Theor.Math.Phys. 21, 1046 (1975).MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    R. Dashen, B. Hasslacher and A. Neveu, Phys. Rev. D10, 4114, 4130, 4138, (1974), Dil, 3424 (1975).Google Scholar
  4. 4.
    S. Coleman, Phys. Rev. D11, 2088 (1975); S. Mandelstam, Phys. Rev. Dil, 3027 (1975); R. Seiler, D. Uhlenbrock, Ann.Phys. 105, 81 (1977); B. Schroer, T. T. Truong, Phys.Rev. D15, 1684 (1977).ADSGoogle Scholar
  5. 5.
    D. Gross and A. Neveu, Phys.Rev. DlO, 3235 (1974).ADSGoogle Scholar
  6. 6.
    R. Shankar and E. Witten, Nucl.Phys. B141, 349 (1978).ADSCrossRefGoogle Scholar
  7. 7.
    R. Dashen, B. Hasslacher and A. Neveu, Phys.Rev. D12, 2443 (1975).MathSciNetADSGoogle Scholar
  8. 8.
    A. B. and AI. B. Zamolodchikov, c. f. ref. [1].Google Scholar
  9. 9.
    B. Berg and W. Weisz, c. f. ref. [l]; V. Kurak and J. A. Swieca, c. f. ref. [l].Google Scholar
  10. 10.
    R. Köberle and J. A. Swieca, c. f. ref. [l].Google Scholar
  11. 11.
    M. D. Kruskal and D. Wiley, American Mathematical Society, Summer Seminar on Nonlinear Wave Motion, ed. A. C. Newell, Potsdam, N.Y. July 1972; B. Berg, M. Karowski and H. J. Thun, Phys.Lett. 62B, 187 (1976), 64B, 286 (1976); B. Yoon, Phys.Rev. D13, 3440 (1976); R. Flume, D. K. Mitter N. Papanicolaou, Phys.Lett. 64B, 289 (1976); P. P. Kulish, E. R. Nissimov, Pisma v JETP 24, 247 (1976).Google Scholar
  12. 12.
    K. Pohlmeyer, Comm.Math.Phys. 46, 207 (1976); M. Lüscher, K. Pohlmeyer, Nucl.Phys. B137, 48 (1978); H. Eichenherr, M. Forger, preprint Freiburg (Germany) THEP 79/2; E. Brezin C. Itzykson, J. Zinn-Justin, J. B. Zuber, preprint Saclay (France) DPh-T/79/1.MathSciNetADSMATHCrossRefGoogle Scholar
  13. 13.
    W. Zimmermann, Ann. Phys. 77, 536 (1973); M. Gomes, J. H. Lowenstein, Phys.Rev. D7, 550 (1973).ADSCrossRefGoogle Scholar
  14. 14.
    R. Flume, Phys.Lett. 62B, 93 (1976) and corrigendum; B. Berg, M. Karowski, H. J. Thun, Phys.Lett. 62B, 633 (1976); Nuovo Cimento 38A, 11 (1977); R. Flume, S. Meyer, Nuovo Cimento Lett. 18_, 236 (1977); E. R. Nissimov, Bulg. Journ. Phys.L. 113 (1977); J. H. Lowenstein, E. R. Speer, Commun.Math.Phys. 63, 97 (1978); preprint, New York, NYU/TR3/7.Google Scholar
  15. 15.
    M. Lüscher, Nucl.Phys. B135, 1 (1978).ADSCrossRefGoogle Scholar
  16. 16.
    P. P. Kulisch, Theor.Math.Phys. 26, 198 (1976); D. Iagolnitzer, Phys. Rev. Dlj3, 1275 (1978).Google Scholar
  17. 17.
    B. Berg, M. Karowski, W. Theis, H. J. Thun, Phys.Rev. D17, 1172 (1978).MathSciNetADSGoogle Scholar
  18. 18.
    B. Berg, M. Karowski, V. Kurak, P. Weisz, Nucl.Phys. B134, 125 (1978).MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    M. Karowski, H. J. Thun, Nucl.Phys. B130, 295 (1977); A. B. Zamolodchikov, Moscow preprint ITEP 12 /1977.Google Scholar
  20. 20.
    M. Karowski, Nucl.Phys. B153, 244 (1979).ADSCrossRefGoogle Scholar
  21. 21.
    A. B. Zamolodchikov, Commun.Math.Phys. 55, 183 (1977).Google Scholar
  22. 22.
    P. Weisz, Nucl.Phys. B122., 1 (1977).Google Scholar
  23. 23.
    B. Schroer, T. Truong, P. Weisz, Phys.Lett. 63B, 422 (1976).Google Scholar
  24. 24.
    M. Karowski, H. H. Thun, to be published.Google Scholar
  25. 25.
    P. Weisz, Phys. Lett. 67B, 179 (1977); A. B. Zamolodchikov, Moscow preprint ITEP 112 (1977).Google Scholar
  26. 26.
    M. Karowski, P. Weisz, Nucl.Phys. B139, 455 (1978).MathSciNetADSCrossRefGoogle Scholar
  27. 27.
    B. Berg, M. Karowski, P. Weisz, Phys.Rev. D19, 2477 (1979).ADSGoogle Scholar
  28. 28.
    R. Z. Bariev, Phys.Lett. 55A, 456 (1976); B. M. McCoy, C. A. Tracy, T. T. Wu, Phys.Rev.Lett. 3Q, 793 (1977); M. Sato, T. Miwa, M. Jimbo, Proc.Japan Acad. 53A, 6 (1977).ADSGoogle Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • M. Karowski
    • 1
  1. 1.Institut für Theoretische PhysikFreie Universität BerlinBerlin 33Deutschland

Personalised recommendations