Advertisement

Application of Immobilized Enzyme Systems in Nonsilver Photography

  • I. V. Berezin
  • N. F. Kazanskaya
  • K. Martinek

Abstract

All photographic processes are based on the ability of a material to change its properties, especially transparency and color, under the action of light. These changes which arise from photochemical conversions of light sensitive compounds, result in the formation of a photographic image. There are very many light sensitive compounds; but only a few have found application in photography. Examples are 1) silver salts that are reduced to silver metal by light, 2) complex salts of iron which are converted to divalent iron by light and in turn can reduce salts of other metals, 3) bichromates of alkaline metals that can tan a gelatin carrier under the action of light, 4) diazo compounds that undergo degradation under the action of light; 5) dyes that change their color under the action of light, and 6) monomers or low molecular weight soluble polymers that under the action of light are changed into insoluble high molecular weight compounds (1–3). As things are today, light signals can be recorded and converted into visible images in any region of the spectrum.

Keywords

Catalytic Activity Quantum Yield Active Center Effective Quantum Yield Dark Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mees, K. C. E. & James, T. H. “Theory of the Photographic Process,” 3rd edition, MacMillan, New York, 1966.Google Scholar
  2. 2.
    Lyalikov, K. S. “The Theory of the Photographic Process,” Iskusstvo Press, Moscow, 1960.Google Scholar
  3. 3.
    Cox, R. I. “Non-Silver Photographic Processes,” Academic Press, London, 1975.Google Scholar
  4. 4.
    Iurre, T. A., Shaburov, V. V. & Eltsov, A. V. Shurn. Vses. Khim. (J. All-Union Cham. Soc., (Russ.) 19: 412–423, 1974.Google Scholar
  5. 5.
    Walker, P., Webers, V. J., Thommes, G. A. Journ. Photographic Sci. 18: 150, 1970.Google Scholar
  6. 6.
    Delzenne, G. A. Chem. Weekblad, December 637, 1976.Google Scholar
  7. 7.
    Rose, A. “Vision, Human and Electronic,” Plenum Press, New York, 1973.Google Scholar
  8. 8.
    Callaby, D. R. & Brotto, M. J. Photographic Sci. 18: 8, 1970.Google Scholar
  9. 9.
    Jonker, H., Biek, H. K. U., Janssen, C. & Klostermann, F. T. Photograph. Sci. Eng. 13: 33, 1969.Google Scholar
  10. 10.
    Berezin, I. V., Varfolomeyev, S. D., Kazanskaya, N. F. & Martinek, K. “Fotoreguljacis Metabolizma i Morfogeneza Rastenij” “(Photoregulation of Metabolism and Morphogenese of Plants”), Nauka, Moscow, 1975, p. 48.Google Scholar
  11. 11.
    Martinek, K. & Berezin, I. V. Photochem. Photobiol. (in press).Google Scholar
  12. 12.
    Laidler, K. J. & Bunting, P.S. “The Chemical Kinetics of Enzyme Action,” Clarendon Press, Oxford, 1973.Google Scholar
  13. 13.
    Berezin, I. V. & Martinek, K. “Osnow Fizicheskoi Khimii Fermentativnogo Kataliza” (“Physicochemical Fundamentals of Enzyme Catalysis”), Vysshaya Shloka Press, Moscow, 1977.Google Scholar
  14. 14.
    Lumry, R. & Biltonen, R. In “Structure and Stability of Biological Macromolecules” S. N. Timasheff and G. D. Fasman, eds.), Marcel Dekker, New York, 1969, p. 65.Google Scholar
  15. 15.
    Berezin, I. V., Varfolomeyev, S. D. & Martinek, K. Dokl. Akad, Nauk Sssr (Russ.) 793: 932, 1970.Google Scholar
  16. 16.
    Martinek, K., Varfolomeyev, S. D. & Berezin, I. V. Eur. J. Biochem. 19: 242, 1971.CrossRefGoogle Scholar
  17. 17.
    Varfolomeyev, S. D., Klibanov, A. M., Martinek, K. & Berezin, I. V. Febs Lett. 15: 118, 1971.CrossRefGoogle Scholar
  18. 18.
    Wald, G. Natale, 219: 800, 1968.CrossRefGoogle Scholar
  19. 19.
    Ostrovski, M. A. In “Ion-Transport across Membranes” D. C. Tosteson and Yu. A. Ovchinnikov, eds.), Raven Press, New York, 1977.Google Scholar
  20. 20.
    Kaufman, H., Vratsanos, S. M. & Erlanger, B. F. Science 162: 1487, 1968.CrossRefGoogle Scholar
  21. 21.
    Erlanger, B. F. Ann. Rev. Biochem. 45: 267, 1976.CrossRefGoogle Scholar
  22. 22.
    Terenin, A. N. “Photonics of Dye Molecules,” Nauka Press, Leningrad, 1967.Google Scholar
  23. 23.
    Calvert, J. G. & Pitts, J. N. Jr. “Photochemistry”, John Wiley and Sons, New York, 1966.Google Scholar
  24. 24.
    Kan, R. O. “Organic Photochemistry,” Mcgraw-Hill, New York, 1966.Google Scholar
  25. 25.
    Berezin, I. V., Klibanov, A. M., Samokhin, G. P., Goldmacher, V. S. & Martinek, K. In “Biomedical Applications of Immobilized Enzymes and Proteins,” vol. 2 (T. M. S. Chang, ed.), Plenum Press, New York, 1977.Google Scholar
  26. 26.
    Erlanger, B. F. & Cohen, W. J. Amer. Chem. Soc. 85: 348, 1963.CrossRefGoogle Scholar
  27. 27.
    Erlanger, B. F., Castleman, H. & Cooper, A. G. J. Amer. Chem. Soc. 85: 1872, 1963.CrossRefGoogle Scholar
  28. 28.
    Erlanger, B. F., Cooper, A. G. & Cohen, W. Biochemistry 5: 190, 1966.CrossRefGoogle Scholar
  29. 29.
    Metzger, H. P. & Wilson, I. B. Biochemistry 3: 926, 1964.CrossRefGoogle Scholar
  30. 30.
    Bieth, J., Vratsanos, S. M., Wassermann, N. & Erlanger, B. F. Proc. Nat. Acad. Sci. USA 64: 1103, 1969.CrossRefGoogle Scholar
  31. 31.
    Bieth, J., Vrastsanos, S. M., Wassermann, N., Cooper, A. G. & Erlanger, B. F. Biochemistry 12: 3023, 1973.CrossRefGoogle Scholar
  32. 32.
    Goeldner, M. P. & Hirth, C. G. Febs Lett. 82: 151, 1977.CrossRefGoogle Scholar
  33. 33.
    Stevens, M. F. G., Mair, A. C. & Reisch, J. Photochem. Photobiol. 13: 441, 1971.CrossRefGoogle Scholar
  34. 34.
    Cunningham, L. W. Comprehensive Biochem. 16: 85, 1965.Google Scholar
  35. 35.
    Bieth, J., Wassermann, N., Vratsanos, S. M. & Erlanger, B. F. Proc. Nat. Acad. Sci. USA 66: 850, 1970.CrossRefGoogle Scholar
  36. 36.
    Galley, K. T., De Sorgo, M. & Prins, W. Biochem. Blophyzs. Res. Commun. 50: 300, 1973.CrossRefGoogle Scholar
  37. 37.
    Berezin, I. V., Varfolomeyev, S. D., Klibanov, A. M. & Martinek, K. Febs Lett. 39: 329, 1974.CrossRefGoogle Scholar
  38. 38.
    Glazer, A. N. Proc. Hat. Acad. Sci. Usa 54: 171, 1965.CrossRefGoogle Scholar
  39. 39.
    Bernhard, S. A., Lee, B. F. & Tashjian, Z. H. J. Mol. Biol. 18: 405, 1966.CrossRefGoogle Scholar
  40. 40.
    Millich, F. & Oster, G. J. Amer. Chem. Soc. 81: 1357, 1959.CrossRefGoogle Scholar
  41. 41.
    Schoffeniels, E. & Nachmansohn, D. Biochim. Biophys. Acta 26: 1, 1957.CrossRefGoogle Scholar
  42. 42.
    Schoffeniels, E. Biochim. Biophys. Acta 26: 585, 1957.CrossRefGoogle Scholar
  43. 43.
    Higman, H. B., Podleski, T. R. & Bartels, E. Blochlm. Blophys. Acta 19: 138, 1964.Google Scholar
  44. 44.
    Deal, W. J., Erlanger, B. F. & Nachmansohn, D. Proc. Nat. Acad. Sci. Usa 61: 1230, 1969.CrossRefGoogle Scholar
  45. 45.
    Bartels, E., Wassermann, N. & Erlanger, B. F. Proc. Nat. Acad. Sci. USA 68: 1820, 1971.CrossRefGoogle Scholar
  46. 46.
    Berezin, I. V., Varfolomeyev, S. D., Savitski, A. P. & Ugarova, N. N. Dokl. Akad. Nauk SSSR 222: 380, 1975.Google Scholar
  47. 47.
    Parker, C. A. Proc. Roy. Soc. A220: 104, 1953.Google Scholar
  48. 48.
    Hatchard, C. G. & Parker, C. A. Proc. Roy. Soc. A235: 518, 1956.Google Scholar
  49. 49.
    Berezin, I. V., Varfolomeyev, S. D. & Martinek, K. Febs Lett. 8: 173, 170.Google Scholar
  50. 50.
    Martinek, K., Varfolomeyev, S. D., Preobrazhenskaya, M. N., Savel’eva, L.A. & Berezin, I. V. Biokhim. (Russ.) 37: 614, 1972.Google Scholar
  51. 51.
    Wainberg, M. A. & Erlanger, B. F. Biochemistry 10: 3816, 1971.CrossRefGoogle Scholar
  52. 52.
    Varfolomeyev, S. D., Ph.D. Thesis, Lomonosov State University, Moscow, 1971.Google Scholar
  53. 53.
    Brestkin, A. P., Zhukovski, Yu. G., Murashkina, S. K., Samokish, V. A., Strelets, B. H. & Trakhnova, G. M. Dokl. Akad. Nauk SSSR 232: 1438, 1977.Google Scholar
  54. 54.
    Taylor, P. W., King, R. W. & Burgen, A. S. V. Biochemistry 9: 2638, 1970.CrossRefGoogle Scholar
  55. 55.
    Maguire, P. J., Hijazi, N. H. & Laidler, K. J. Biochim. Blophys. Acta 341: 1, 1974.Google Scholar
  56. 56.
    Burstein, E. A. “Luminescence of Protein Chromophores,” Chap. 5, Viniti Press, Moscow, 1976.Google Scholar
  57. 57.
    Comorosan, S. Nature 227: 64, 1970.CrossRefGoogle Scholar
  58. 58.
    Comorosan, S., Vieru, S. & Sandru, D. Int. J. Radiat. Biol. 17: 105, 1970.CrossRefGoogle Scholar
  59. 59.
    Comorosan, S., Sandru, D. & Alexandresku, E. Enzymologia 38: 317, 1970.Google Scholar
  60. 60.
    Schonbaum, G. B., Zorner, B. & Bender, M. L. J. Biol. Cham. 236: 2930, 1961.Google Scholar
  61. 61.
    Varfolomeyev, S. D., Klibanov, A. M., Martinek, K. & Berezin, I. V. Dokl. Akad. Nauk SSSR 203: 616, 1972.Google Scholar
  62. 62.
    Aisina, R. B., Vasil’eva, T. E., Kazanskaya, N. F., Tikhodeeva, A. S. & Berezin, I. V. Biokhimiya (Russ.) 38: 601, 1973.Google Scholar
  63. 63.
    Berezin, I. V., Aisina, R. B., Bronnikov, G. E. & Kazanskaya, N. F. Bioorg. Khim. (Russ.) 1: 402, 1975.Google Scholar
  64. 64.
    Berezin, I. V., Aisina, R. B., Varfolomeyev, S. D. & Kazanskaya, N. F. Dokl. Akad, Nauk SSSR 219: 1255, 1975.Google Scholar
  65. 65.
    Singh, A., Thornton, E. R. & Westheimer, F. H. J. Biol. Chem. 237: 3006, 1962.Google Scholar
  66. 66.
    Vaughan, R. J. & Westheimer, F. H. J. Amer. Chem. Soc. 91: 217, 1969.CrossRefGoogle Scholar
  67. 67.
    Spencer, T. & Sturtevant, J. M. J. Amer. Chem. Soc. 81: 1874, 1959.CrossRefGoogle Scholar
  68. 68.
    Torchinski, Yu. M. “Sulfhydryl and Disulfide Groups of Proteins,” Plenum Press, New York, 1974.Google Scholar
  69. 69.
    Klein, I. B. & Kirsch, J. F. Biochem. Biophys. Res. Commun. 34: 575, 1969.CrossRefGoogle Scholar
  70. 70.
    Klein, I. B. & Kirsch, J. F. J. Biol. Chem. 244: 5928, 1969.Google Scholar
  71. 71.
    Eager, J. E. & Savige, W. E. Photochem. Photoblol. 2: 25, 1963.CrossRefGoogle Scholar
  72. 72.
    Risi, S., Dose, K., Rathinasamy, T. & Augenstein, L. G. Photochem. Photoblol. 6: 423, 1967.CrossRefGoogle Scholar
  73. 73.
    Asquith, R. & Hirst, L. Blochlm. Blophys. Acta 184: 345, 1969.CrossRefGoogle Scholar
  74. 74.
    Dose, K. & Risi, S. Photochem. Photobiol. 15: 43, 1972.CrossRefGoogle Scholar
  75. 75.
    Kazanskaya, N. F. & Nikol’skaya, I. I., Vestnik Mgu Ser. Khim. (Russ.) 16: 49, 1975.Google Scholar
  76. 76.
    Ritchey, J. M., Gibbons, T. & Schachman, H. K. Biochemistry 16: 4584, 1977.CrossRefGoogle Scholar
  77. 77.
    Smets, G. Pure Appl. Chem. 30: 1, 1972.CrossRefGoogle Scholar
  78. 78.
    Ermakova, E. D., Arsenov, V. D., Tcherkashin, M. I. & Kisilitsa, P. P. Uspekhi Khim. (Russ.) 46: 292, 1977.Google Scholar
  79. 79.
    Lovrien, R. & Waddington, J. C. B. J. Amer. Chem. Soc. 86: 2315, 1964.CrossRefGoogle Scholar
  80. 80.
    Lovrien, R. Proc. Nat. Acad. Sci. USA 57: 236, 1967.CrossRefGoogle Scholar
  81. 81.
    Lovrien, R. J. Amer. Chem. Soc. 96: 244, 1974.CrossRefGoogle Scholar
  82. 82.
    Van Der Veen, G. & Prins, W. Nature 230: 70, 1971.CrossRefGoogle Scholar
  83. 83.
    Van Der Veen, G. & Prins, W. Photochem. Photobiol. 19: 191, 1974.CrossRefGoogle Scholar
  84. 84.
    Van Der Veen, G., Hoguet, R. & Prins, W. Photochem. Photobiol. 19: 197, 1974.CrossRefGoogle Scholar
  85. 85.
    Namba, K. & Suzuki, S. Chem. Lett. 9: 947, 1975.CrossRefGoogle Scholar
  86. 86.
    Aizawa, M., Namba, K. & Suzuki, S. Arch Biochem. Biophys. 180: 41, 1977.CrossRefGoogle Scholar
  87. 87.
    Inoue, E., Kokado, H., Shimizu, I. & Kobayashi, H. Bull. Chdm. Soc. Japan 45: 1951, 1972.CrossRefGoogle Scholar
  88. 88.
    Kolomiychenko, M. A. Ukrainsk. Biokhim. Zh. (Russ.) 28: 164, 1956.Google Scholar
  89. 89.
    Kolomiychenko, M. A. Ukrainsk. Biokhim. Zh. (Russ.) 29: 361, 1957.Google Scholar
  90. 90.
    Volotovski, I. D., Voskresenskaya, L. G. & Konev, S. V. Biofizika (Russ.) 17: 971, 1972.Google Scholar
  91. 91.
    Montagnoli, G. Acta Vitamin. Enzymol. (Milano) 28: 268, 1974.Google Scholar
  92. 92.
    Montagnoli, G., Monti, S., Nannicini, L. & Felicioli, R. Photochem. Photobiol. 23: 29, 1976.CrossRefGoogle Scholar
  93. 93.
    Montagnoli, G., Monti, S., Nannicini, L., Giovannitti, M. P. & Ristori, M. G. Photochem. Photobiol. 27: 43, 1978.CrossRefGoogle Scholar
  94. 94.
    Frohlich, H. Int. J. Quant. Chdm. 2: 641, 1968.CrossRefGoogle Scholar
  95. 95.
    Frohlich, H. Nature 228: 1093, 1970.CrossRefGoogle Scholar
  96. 96.
    Kollias, N. & Melander, W. R. Phys. Lett. 57A: 102, 1976.Google Scholar
  97. 97.
    Mclaren, A. D. Adv. Enzymol. 9: 75, 1949.Google Scholar
  98. 98.
    Augenstein, L. G. Adv. Enzymol. 24: 359, 1962.Google Scholar
  99. 99.
    Mclaren, A. D. & Shugar, D. “Photochemistry of Proteins and Nucleic Acids,” Oxford University Press, Oxford, 1964.Google Scholar
  100. 100.
    Vladimirov, Y. A. “Photochemistry and Luminescence of Proteins,” Nauka Press, Moscow, 1965.Google Scholar
  101. 101.
    Mclaren, A. D. Enzymologia 37: 273, 1969.Google Scholar
  102. 102.
    Konev, S. V. & Volotovski, I.D. “Introduction in Molecular Photobiology,” Nauka i Tekhnika Press, Minsk, 1971.Google Scholar
  103. 103.
    Schmid, G. H. Hoppd-Seyler Z. Physiol. Chdm. 351: 575, 1970.CrossRefGoogle Scholar
  104. 104.
    Spikes, J. D. In “Photophysiology,” vol. 3 (A. C. Giese, ed.) Academic Press, New York, 1968, p. 33.Google Scholar
  105. 105.
    Spikes, J. D. & Straight, R. Ann. Rev. Phys. Chem. 18: 409, 1967.CrossRefGoogle Scholar
  106. 106.
    Dixon, M. & Webb, E. C. “Enzymes,” Academic Press, New York, 1964.Google Scholar
  107. 107.
    Varfolomeyev, S. D., Martinek, K. & Berezin, I. V. “Proc. Lab. Bioorg. Chem. Moscow State Univ. Mgu Press, Moscow, 1970, p. 289.Google Scholar
  108. 108.
    Adamson, A. W. & Sporer, A. H. J. Amer. Chem. Soc. 80: 3865, 1958.CrossRefGoogle Scholar
  109. 109.
    Basolo, F. & Pearson, R. G. “Mechanisms of Inorganic Reactions. A Study of Metal Complexes in Solution,” John Wiley and Sons, New York, 1967, Chap. 8.Google Scholar
  110. 110.
    Berezin, I. V., Kazanskaya, N. F. & Aisina, R. B. Vokl. Akad. Nank SSSR 207: 1383, 1972.Google Scholar
  111. 111.
    Balasubramania, D., Subramani, S. & Kumar, C. Nature 254: 252, 1975.CrossRefGoogle Scholar
  112. 112.
    Karube, I., Nakamoto, Y., Namba, K. & Suzuki, S. Biochim. Biophys. Acta 429: 975, 1976.Google Scholar
  113. 113.
    Nakamoto, Y., Karube, I., Tarawaki, S. & Suzuki, S. J. Solid Phase Biochem. 1: 143, 1976.Google Scholar
  114. 114.
    Nakamoto, Y., Nishida, M., Karube, I. & Suzuki, S. Biotechnol. Bioeng. 19: 1115, 1977.CrossRefGoogle Scholar
  115. 115.
    Karube, I., Suzuki, S., Nakamoto, Y. & Nishida, M. Biotechnol. Bioeng. 19: 1549, 1977.CrossRefGoogle Scholar
  116. 116.
    Zaborsky, O. R. “Immobilized Enzymes,” Chem. Rubber Co. Press, Cleveland, 1973.Google Scholar
  117. 117.
    Mosbach, K. Meth. Enzymol. 44: 149, 1976.Google Scholar
  118. 118.
    Chang, T. M. S., “Biomedical Applications of Immobilized Enzymes and Proteins,” vol. 1, Plenum Press, New York 1977.CrossRefGoogle Scholar
  119. 119.
    Yaqub, M. & Guire, P. J. Biomed. Mater. Res. 8: 291, 1974.CrossRefGoogle Scholar
  120. 120.
    Guire, P. Meth. Enzymol. 44: 280, 1976.CrossRefGoogle Scholar
  121. 121.
    Fleet, G. W. J., Porter, R. R. & Knowles, J. R. Nature 224: 511, 1969.CrossRefGoogle Scholar
  122. 122.
    Kramer, D. M., Lehmann, K., Pennewiss, H. & Plainer, H. “Proc. Conf. on Protides of the Biological Fluids, Brugge, Belgium, May 1975,” Pergamon Press, 1975, p. 505.Google Scholar
  123. 123.
    Wilson, D. F., Miyata, Y., Erecinska, M. & Vanderkooi, J. M. Arch. Biochem. Blophys. 171: 104, 1975.CrossRefGoogle Scholar
  124. 124.
    Guire, P. In “Enzyme Engineering,” vol. 3 (E. K. Pye and H. H. Weetall, eds.) Plenum Press, New York, 1978.Google Scholar
  125. 125.
    Bernfeld, P. & Wan. J. Science 142: 678, 1963.CrossRefGoogle Scholar
  126. 126.
    Maurer, H. R. “Disk-Elektrophorese,” Walter de Gruyter and Co., Berlin, 1968, Chap. 1.Google Scholar
  127. 127.
    Odian, G. “Principles of Polymerization,” 1970, Chap. 3.Google Scholar
  128. 128.
    Fukui, S. & Tanaka, A. Fess Lett. 66: 179, 1976.CrossRefGoogle Scholar
  129. 129.
    Johansson, A.-C. & Mosbach, K. Biochim. Biopkys. Acta 370: 339, 1974.Google Scholar
  130. 130.
    Ekman, B. & Sjoholm, J. Nature 257: 825, 1975.CrossRefGoogle Scholar
  131. 131.
    Samokhin, G. P., Klibanov, A. M. & Martinek, K. Vestnik Mgu Ser. Khim. (Russ.) 79: 433, 1978.Google Scholar
  132. 132.
    Burstone, M. S. “Enzyme Histochemistry and its Application in the Study of Neoplasms,” Academic Press, New York, 1962.Google Scholar
  133. 133.
    Usa Pat. No. 3, 694,207; 1972.Google Scholar
  134. 134.
    Usa Pat. No. 3,515,551; 1970.Google Scholar
  135. 135.
    France Pat. No. 1, 492, 872; 1967.Google Scholar
  136. 136.
    Usa Pat. No. 3,649,207; 1970.Google Scholar
  137. 137.
    Ussr Pat. No. 439,780; 1971.Google Scholar
  138. 138.
    Ussr Pat. No. 595,693; 1973.Google Scholar
  139. 139.
    Ussr Pat. No. 584,280; 1975.Google Scholar
  140. 140.
    Aisina, R. B., Kazanskaya, N. F. & Berezin, I. V. Biokhimiya (Russ.) 39: 577, 1974.Google Scholar
  141. 141.
    Lillie, R. D. “Histopathologic Technic and Practical Histochemistry,” McGraw-Hill Book Company, New York, 1965.Google Scholar
  142. 142.
    Lukasheva, E. V., Aisina, R. B., Kazanskaya, N. F. & Berezin, I. V. Biochimiya 42: 465, 1977.Google Scholar
  143. 143.
    Chang. T. M. S. “Artificial Cells,” Charles C. Thomas Publisher, Springfield, Illinois, Usa, 1971.Google Scholar
  144. 144.
    Lukasheva, E. V., Aisina, R. B., Grachova, I. I., Kazanskaya, N. F. & Berezin, I. V. Biochimiya 42: 2013, 1977.Google Scholar
  145. 145.
    Lee, Y. Y., Melina, O. & Tebbett, L. Biotecnol. Bioeng. (in press).Google Scholar
  146. 146.
    Neurath, H. & Walsh, K. A., Proc. Nat. Acad. Sci. Usa 73: 3825, 1976.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • I. V. Berezin
    • 1
  • N. F. Kazanskaya
    • 1
  • K. Martinek
    • 1
  1. 1.Moscow State UniversityMoscowUSSR

Personalised recommendations