Spatially Structured Enzyme Support Arrangements in Electrochemical Systems

  • L. B. WingardJr.


Numerous ideas have been developed and others have been proposed for combining electrochemistry and immobilized enzymes to produce unique in vitro processes of possible use in energy transfer, analytical chemistry, and organic synthesis. Some recent and pertinent reviews have been published elsewhere (1–3). Early in vitro enzyme catalyzed energy transfer studies utilized microbial cells or isolated enzymes in solution or attached loosely to electron conducting supports; but the results of these studies showed rather poor electron transfer efficiencies (1,4,5). In analytical chemistry a wide variety of enzyme electrodes or immobilized enzyme assay techniques have been devised, often with Polarographic or Potentiometric readout (1,2). While in organic syntheses, the electrochemical regeneration of enzyme oxidation-reduction cofactors holds promise for the development of complex enzyme-catalyst reaction systems (6). In most of these studies little attention has been given to the relative spatial arrangement of the immobilized enzyme, the support matrix, and the electron conducting electrode material. However, some of the more recent studies have begun to explore the possibilities inherent in constructing specific relative spatial arrangements for the enzyme, the matrix, and the conducting electrode material. The purpose of this paper is to describe several immobilized enzyme systems where the spatial arrangement of the components may be an important factor in the overall electrochemical performance of the process.


Immobilize Enzyme Glucose Oxidase Methyl Viologen Nicotinamide Adenine Dinucleotide Relative Spatial Arrangement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wingard Jr., L. B. Process Biochemistry 14: 6, 1979.Google Scholar
  2. 2.
    Guilbault, G. G. & Sadar, M. H. Accounts Chem. Res. 12: 344, 1979.CrossRefGoogle Scholar
  3. 3.
    Berezin, I. V. & Varfolomeev, S.D. In “Enzyme Technology” (L. B. Wingard Jr., E. Katchalski-Katzir, and L. Goldstein, eds.) Academic Press, New York, 1979, p. 259.Google Scholar
  4. 4.
    Wingard Jr., L.B. Hindustan Antibiotics Bull. 20: 109, 1978.Google Scholar
  5. 5.
    Wingard Jr., L. B. & Shaw, C. H. In “Biotechnology of Electron Transfer” (E. K. Pye, ed.) Intl. Fed. Inst. Adv. Study, Solna, Sweden, in press.Google Scholar
  6. 6.
    Aizawa, M., Coughlin, R. W. & Charles, M. Blotechnol. Bioeng. 18: 209, 1976.CrossRefGoogle Scholar
  7. 7.
    Lahoda, E. J., Liu, C. C. & Wingard Jr., L. B. Biotechnol. Bioeng. 17: 413, 1975.CrossRefGoogle Scholar
  8. 8.
    Tsuge, H. & Mitsuda, H. J. Vitaminology 17: 24, 1971.CrossRefGoogle Scholar
  9. 9.
    Singer, T. P. & Edmondson, D. E. Febs Lett. 42: 1, 1974.CrossRefGoogle Scholar
  10. 10.
    Edmondson, D. E. & Singer, T. P. Febs Lett. 64: 255, 1976.CrossRefGoogle Scholar
  11. 11.
    Wingard Jr., L. B. & Gurecka Jr., J. L., submitted.Google Scholar
  12. 12.
    Trippett, S. Quart. Rev. 17: 406, 1963.CrossRefGoogle Scholar
  13. 13.
    Millis, J. R. & Wingard Jr., L. B., submitted.Google Scholar
  14. 14.
    Varfolomeev, S. D., Yaropolov, A. I., Berezin, I. V., Tarasevich, M. R. & Bogdanovskaya, V. A. Bioelectrochem. Bioenergetics 4: 314, 1977.CrossRefGoogle Scholar
  15. 15.
    Yaropolov, A. I., Ph.D. Thesis, Moscow State University, 1978.Google Scholar
  16. 16.
    Wingard Jr., L. B., Yao, S. J. & Liu, C. C. J. Mol. Cat., in press.Google Scholar
  17. 17.
    Mitchell, P. Biol. Rev. Cambridge Phil. Soc. 41: 445, 1966.CrossRefGoogle Scholar
  18. 18.
    Mitchell, P. Febs Lett. 78: 1, 1977.CrossRefGoogle Scholar
  19. 19.
    Mandel, L. J. In “Modern Aspects of Electrochemistry,” No. 8 (J. O’M. Bockris and B. E. Conway, eds.) Plenum Press, New York, 1972, p. 239.Google Scholar
  20. 20.
    Liu, C. C, Wingard Jr., L. B., Wolfson Jr., S. K., Yao, S. J., Drash, A. L. & Schiller, J. G. Bioelectrochem. Bioenergetics 6: 19, 1979.CrossRefGoogle Scholar
  21. 21.
    Wingard Jr., L. B., Ellis, D., Yao, S. J., Schiller, J. G., Liu, C. C., Wolfson Jr., S. K. & Drash, A. L. J. Solid Phase Biochem., in press.Google Scholar
  22. 22.
    Wingard Jr., L. B., Schiller, J. G., Wolfson Jr., S. K., Liu, C. C., Drash, A. L. & Yao, S. J. J. Biomed. Matls. Res 13: 245, 1979.Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • L. B. WingardJr.
    • 1
  1. 1.University of Pittsburgh Medical SchoolPittsburghUSA

Personalised recommendations