Advertisement

Stabilization and Reactivation of Enzymes

  • K. Martinek
  • V. V. Mozhaev
  • I. V. Berezin

Abstract

Prevention of the denaturation of enzymes is frequently indispensable to their technological application. This is exemplified by the following five operational factors of importance in the practical use of enzymes:
  1. 1.

    Enzymes isolated from their in Vivo environment usually become labile, and their lifetime sometimes does not exceed minutes (1–4). For example, the stability of immobilized aspartase proved insufficient for technological use of this enzyme (5).

     
  2. 2.

    For many processes, elevated temperature is desirable. The rates of chemical reactions, including enzymatic, increase with temperature; so that at higher temperatures, the required conversion of the substrate will be achieved in a shorter time or with a smaller amount of immobilized enzyme. This is very important for technological processes where the cost of the enzyme is a limiting factor, e. g., glucoamylase (6). Also, higher temperatures allow germ-free conditions to be maintained (7), which are indispensable for, say, the food industry (8,9). On the other hand, denaturation of biocatalysts intensifies (1–3) at elevated temperatures.

     
  3. 3.

    Reaction equilibrium may be such that the required products are obtained only if the reaction is carried out in an aqueous-organic mixture with a high proportion of the organic component. Under such conditions enzymes as a rule lose their catalytic activity or specificity (2,10; see also references in 11).

     
  4. 4.

    Sometimes the pH optimum of an enzymatic reaction and the pH range within which the enzyme is stable do not coincide. A good example is synthesis of penicillin antibiotics under the action of penicillin amidase; equilibrium in the synthesis is shifted toward the product in an acidic medium, where the enzyme is rather unstable (12).

     
  5. 5.

    It may not be convenient to use an enzyme immediately upon harvesting or isolation. Hence there is a need for stabilization against inactivation during prolonged storage (13).

     

Keywords

Immobilize Enzyme Reversed Micelle Random Coil Enzyme Molecule Biphasic System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Joly, M. “Physicochemical Approach to Denaturation of Proteins,” Academic Press, New York, 1965.Google Scholar
  2. 2.
    Tanford, C. Adv. Protein. Chem. 23: 121, 1968.CrossRefGoogle Scholar
  3. 3.
    Aleksandrov, V. Ya. “Cells, Macromolecules, Temperature”, Nauka Press, Leningrad, and Springer-Verlag, Berlin, 1975.Google Scholar
  4. 4.
    Kushner, V. P. “Conformation Flexibility and Denaturation of Biopolymers” (Russ.), Nauka Press, Leningrad, 1977.Google Scholar
  5. 5.
    Chibata, I., Tosa, T. & Sato, T. Meth. Enzymol. 44: 739, 1976.CrossRefGoogle Scholar
  6. 6.
    Weetall, H. H., Vann, W. P., Pitcher, W. H., Lee, D. D., Lee, Y. Y., & Tsao, G. T. Meth. Enzymol. 44: 776, 1976.CrossRefGoogle Scholar
  7. 7.
    Lilly, M. D. & Dunnill, P. Meth. Enzymol. 44: 717, 1976.CrossRefGoogle Scholar
  8. 8.
    Pasture, M., Moris I. F. & Taccardelli, D. In “Insolubilized Enzymes” (M. Salmona, C. Saronio and S. Garattini, eds.) Raven Press, New York, 1974, p. 211.Google Scholar
  9. 9.
    Woodward, J. & Wiseman, A. J. Appl. Chem. Blotechnol 26: 580, 1976.Google Scholar
  10. 10.
    Singer, S. J. Adv. Protein. Chem. 11: 1, 1962.Google Scholar
  11. 11.
    Klibanov, A. M., Samokhin, G. P., Martinek, K. & Berezin, I. V. Biotechnol. Bioeng. 19: 1351, 1977.CrossRefGoogle Scholar
  12. 12.
    Berezin, I. V., Klyosov, A. A., Margolin, A. L., Nys, P. S., Savitskaya, E. M. & Svedas, V.-J. K. Antibiotiki (Russ.) 21: 519, 1976.Google Scholar
  13. 13.
    Weetall, H. H. Biochim. Blophys. Acta 212: 1, 1970.Google Scholar
  14. 14.
    Cooney, D. L., Demain, A. L., Dunnill, P., Humphrey, A. E., Lilly, M. D. & Wang, D. I. C. “Fermentation and Enzyme Technology,” John Wiley, New York, 1977.Google Scholar
  15. 15.
    Berezin, I. V., Antonov, V. K. & Martinek, K., eds. “Immobilized Enzymes,” Moscow University Press, Moscow, 1976.Google Scholar
  16. 16.
    Goldman, R., Goldstein, L. & Katchalski, E. In: “Biochemical Aspects of Reactions on Solid Supports” (G. R. Stark, ed.) Academic Press, New York, p. 1, 1971.Google Scholar
  17. 17.
    Zaborsky, O. R. “Immobilized Enzymes”, Crc Press, Cleveland, 1973.Google Scholar
  18. 18.
    Weetall, H. H. & Suzuki, S., eds. “Immobilized Enzyme Technology”, Plenum Press, New York, 1975.Google Scholar
  19. 19.
    Mosbach, K. Math. Enzymol. 44: 1976.Google Scholar
  20. 20.
    Bell, G., Blain, J. A., Patterson, J. D. E. & Todd, R. J. Appl. Chzm. Biotechnol. 26: 583, 1976.Google Scholar
  21. 21.
    Anon., “Enzymes and Proteins from Thermophilic Micro-organisms”, Experientia, Suppl. 26, 1976.Google Scholar
  22. 22.
    Vieth, W. R. & Venkatasubramanian, K. Chem. Technol. 4: 309, 1974.Google Scholar
  23. 23.
    Melrose, G. J. H. Rev. Pure Appl. Chzm. 21: 83, 1971.Google Scholar
  24. 24.
    Gabel, D., Steinberg, I. Z. & Katchalski, E. Biochemistry 10: 4661, 1971.CrossRefGoogle Scholar
  25. 25.
    Giacometti, G. M., Colosimo, A., Stefanini, S., Brunori, M. & Antonini, E. Biochim. Biophys. Acta 285: 320, 1972.Google Scholar
  26. 26.
    Berliner, L. J., Miller, S. T., Uy, R. & Royer, G. P. Biochem. Blophys. Acta 315: 195, 1973.Google Scholar
  27. 27.
    Moore, T. A. & Greenwood, C. Biochem. J. 149: 169, 1975.Google Scholar
  28. 28.
    Lasch, J. Acta Biol. Med. Germ. 34: 549, 1975.Google Scholar
  29. 29.
    Barel, A. O. & Prieels, J.-P. Eur. J. Biochem. 50: 463, 1975.CrossRefGoogle Scholar
  30. 30.
    Blumenfeld, L. A. “Problems of Biophysics,” Nauka Press, Moscow, 1974, chap. 5.Google Scholar
  31. 31.
    Martinek, K., Torchilin, V. P., Maksimenko, A. V., Smirnov, V. N. & Berezin, I. V. Vokl. Akad. Nauk Sssr (in press)Google Scholar
  32. 32.
    Feeney, R. E., Blankenhorn, G. & Dixon, H. B. F. Adv. Protein Cham. 29: 135, 1975.CrossRefGoogle Scholar
  33. 33.
    Zaborsky, O. R. In “Enzyme Engineering”, Vol. 2 (E. K. Pye and L. B. Wingard, Jr. eds.), Plenum Press, New York.Google Scholar
  34. 34.
    Wold, F. Meth. Enzymol. 25: 623, 1972.CrossRefGoogle Scholar
  35. 35.
    Kennedy, J. H., Kricka, L. J. & Wilding, P. Clin. Chim. Acta. 70: 1, 1976.CrossRefGoogle Scholar
  36. 36.
    Zaborsky, O. R. In “Enzyme Engineering”, Vol. 1, (L. B. Wingard, Jr. ed.) John Wiley, New York, 1972, p. 211.Google Scholar
  37. 37.
    Saidel, L. J., Leitzes, S. & Elfring, W. H. Biochem. Biophys. Res. Commun. 15: 409, 1964.CrossRefGoogle Scholar
  38. 38.
    Herzig, D. J., Rees, A. W. & Day, R. A. Biopolymers, 2: 349, 1964.CrossRefGoogle Scholar
  39. 39.
    Wang, J. H. & Tu, J. Biochemistry 8: 4403, 1969.CrossRefGoogle Scholar
  40. 40.
    Josephs, R., Eizenberg, H. & Reisler, E. Biochemistry 12: 4060, 1973.CrossRefGoogle Scholar
  41. 41.
    Beaven, G. H. & Gratzer, W. B. Int. J. Peptide Ptotein Res. 5: 215, 1973.CrossRefGoogle Scholar
  42. 42.
    Snyder, P. D., Jr., Wold, J. F., Bernlohr, R. W., Dullum, C., Desnich, R. J., Krivit, W. & Condie, R. M. Biochim. Biophys. Acta 350: 432, 1974.Google Scholar
  43. 43.
    Maksimenko, A. V., Torchilin, V. P., Klibanov, A. M. & Martinek, K. Vestnik Mgu (Bull. Moscow Univ.) 19: No. 5, 1978.Google Scholar
  44. 44.
    Reiner, R., Siebeneick, H.-U., Christensen, I. & Doring, H. J. Mol. Catal. 2: 119, 1977.CrossRefGoogle Scholar
  45. 45.
    Woodward, J. & Wiseman, A. J. Appl. Chem. Blotechnol. 26: 580, 1976.Google Scholar
  46. 46.
    Torchilin, V. P., Maksimenko, A. V., Smirnov, V. N., Berezin, I. V., Klibanov, A. M. & Martinek, K. Biochem. Biophys. Acta 522: 277, 1977.Google Scholar
  47. 47.
    Khorana, H. G. Chem. Rev. 53: 145, 1953.CrossRefGoogle Scholar
  48. 48.
    Reiner, R., Siebeneick, H.-V., Christensen, I. & Lukas, H. J. Mol. Catal. 1: 3, 1975.CrossRefGoogle Scholar
  49. 49.
    Goldstein, L. (1972) Biochemitry 11: 4072, 1972.CrossRefGoogle Scholar
  50. 50.
    Chang, T. M. S., ed. “Biomedical Applications of Immobilized Enzymes and Proteins”, Plenum Press, New York, 1977.Google Scholar
  51. 51.
    Glassmeyer, C. K. & Ogle, J. Biochemistry 10: 786, 1971.CrossRefGoogle Scholar
  52. 52.
    Royer, G. P. & Uy, R. J. Blol. Cham. 248: 2621, 1973.Google Scholar
  53. 53.
    Klibanov, A. M., Samokhin, G. P., Martinek, K. & Berezin, I. V. Biochim. Biophys. Acta 438: 1, 1976.Google Scholar
  54. 54.
    Gabel, D. Eur. J. Blochem. 33: 348, 1973.CrossRefGoogle Scholar
  55. 55.
    Delaage, M. & Lazdunski, M. Eur. J. Biochem. 4: 378, 1968.CrossRefGoogle Scholar
  56. 56.
    Martinek, K., Klibanov, A. M., Goldmacher, V. S. & Berezin, I. V. Biochem. Blophys. Acta 485: 1, 1977.Google Scholar
  57. 57.
    Gabel, D. & Kasche, V. Blochem. Blophys. Res. Commun. 48: 1011, 1972.CrossRefGoogle Scholar
  58. 58.
    Mosbach, K. & Gestrelius, S. Febs Lett 42: 200, 1974.CrossRefGoogle Scholar
  59. 59.
    Martinek, K., Klibanov, A. M. & Berezin, I. V. Ussr-Usa Seminar on Immobilized Enzymes, Moscow, 1975.Google Scholar
  60. 60.
    Martinek, K., Goldmacher, V. S., Klibanov, A. M., Torchilin, V. P., Smirnov, V. N., Chazov, E. I. & Berezin, I. V. Dokl. Akad. Nauk SSSR 228: 1468, 1976.Google Scholar
  61. 61.
    Jaworek, D., Botsch, H. & Maier, J. Meth. Enzymol. 44: 195, 1976.CrossRefGoogle Scholar
  62. 62.
    Goldmacher, V. S., Klibanov, A. M. & Martinek, K. Vztstnik MGU [Bull. Moscow Univ.) 19: No. 4, 1978.Google Scholar
  63. 63.
    Martinek, K., Klibanov, A. M., Tchernysheva, A. V., Mozhaev, V. V., Berezin, I. V. & Glotov, B. O. Biochem. Blophys. Acta 485: 13, 1977.Google Scholar
  64. 64.
    Kulys, J. J. & Kurtinaitiene, B. S. Biokhimiya (Russ). 43: 453, 1978.Google Scholar
  65. 65.
    Klyosov, A. A. & Svedas, V. YU.-K. In: “Itogi Nauki i Techniki”, (V. L. Kretovich, ed.) Viniti Press, Moscow, 1978, p. 209.Google Scholar
  66. 66.
    O’driscoll, K. F. Adv. Biochem. Eng. 4: 155, 1976.Google Scholar
  67. 67.
    Chang, T. M. S. “Artificial Cells”, Thomas, Springfield, Illinois, 1972.Google Scholar
  68. 68.
    Messing, R. A. Meth. Enzymol. 44: 148, 1976.CrossRefGoogle Scholar
  69. 69.
    Poltorak, O. M. & Chiukhrai, E. S. “Physico-Chemical Fundamentals of Enzymatic Catalysis”, High School Press, Moscow, 1971, Chap. 14.Google Scholar
  70. 70.
    Chapelle, E. W., Rich, E., Jr. & Macleod, N. H. Science. 155: 1287, 1967.CrossRefGoogle Scholar
  71. 71.
    Horigome, T., Kasai, H. & Okuyama, T. J. Biochem. 15: 299, 1974.Google Scholar
  72. 72.
    Schneider, Z., Stroinski, A. & Pawelkiewicz, J. Bull. Acad. Volon. Sci. Ser. Sci. Biol. 16: 203, 1968.Google Scholar
  73. 73.
    Norris, R. D. & Pawelkiewicz, J. Phytochemistry 14: 1701, 1975.CrossRefGoogle Scholar
  74. 74.
    Goldmacher, V. S. Ph.D. thesis, Lomonosov State University, Moscow, 1977.Google Scholar
  75. 75.
    Goldmacher, V. S., Klibanov, A. M., Mishin, A. A., Mozhaev, V. V. & Martinek, K. Vestnik MGU (Bull. Moscow Univ.) 19: No. 3, 1978.Google Scholar
  76. 76.
    Martinek, K., Goldmacher, V. S., Mishin, A. A., Torchilin, V. P., Smirnov, V. N. & Berezin, I. V. Dokl. Akad. Nauk SSSR 239: 227, 1978.Google Scholar
  77. 77.
    Allen, R. C. & Maurer, H. R., eds. “Electrophoresis and Isoelectric Focusing in Polyacrylamide Gel”, DeGruyter, New York, 1974.Google Scholar
  78. 78.
    White, M. L. J. Phys. Chem. 64: 1563, 1960.CrossRefGoogle Scholar
  79. 79.
    Gressel, J. & Robards, A. W. J. Chromatogr. 144: 455, 1975.CrossRefGoogle Scholar
  80. 80.
    Berezin, I. V., Klibanov, A. M. & Martinek, K. Blochim. Biophys. Acta 364: 193, 1974 & Meth. Enzymol. 44: 571, 1976.Google Scholar
  81. 81.
    Martinek, K., Goldmacher, V. S., Klibanov, A. M. & Berezin, I. V. Febs Lett. 51: 152, 1975.CrossRefGoogle Scholar
  82. 82.
    Obrink, B. & Laurent, T. V. Eur. J. Biochem. 41: 83, 1974.CrossRefGoogle Scholar
  83. 83.
    Grysziewicz, J. Folia Blol. 19: 119, 1971.Google Scholar
  84. 84.
    Kulys,J. J., Kurtinaitiene, B. S. & Akulova, V. F. J. Solid-Phase Biochem. (in press)Google Scholar
  85. 85.
    Levin, Y., Pecht, M., Goldstein, L. & Katchalski, E. Biochemistry 3: 1905, 1964.CrossRefGoogle Scholar
  86. 86.
    Goldstein, L., Levin, Y. & Katchalski, E. Biochemistry 3: 1913, 1964.CrossRefGoogle Scholar
  87. 87.
    Berezin, I. V., Klibanov, A. M. & Martinek, K. Uspekhi Khim. (Russ. Chzm. Rev.) 44: 17, 1975.Google Scholar
  88. 88.
    Streltsova, Z.A., Svedas, V. K., Maksimenko, A. V., Klyosov, A. A., Braudo, E. E., Tobstoguzov, V. B. & Berezin, I. V. Bioorg. Khlm. (Russ.) 1: 1464, 1975.Google Scholar
  89. 89.
    Barnard, M. L. & Laidler, K. J. Arch. Biochem. Blophys. 44: 338, 1953.CrossRefGoogle Scholar
  90. 90.
    Khurqin, Yr. I., Roslyakov, V. Ya., Azizov, Yu. M. & Kaverzneva, E. D. Izv. Akad. Nauk SSSR Ser. Khim. 12: 2840, 1968.Google Scholar
  91. 91.
    Bettelheim, F. A. & Lukton, A. Nature 198: 357, 1963.CrossRefGoogle Scholar
  92. 92.
    Bettelheim, F. A. & Senatore, P. J. Chim. Phys. (Phys. Chim. Biol.) 61: 105, 1964.Google Scholar
  93. 93.
    Rammler, D. H. In: “Dimethyl Sulfoxide”, Vol. 1 (S. W. Jacob, E. E. Rosenbaum, and D. C. Wood, eds.) Marcel Dekker, New York, 1971, p. 189.Google Scholar
  94. 94.
    Azizov, Yu. M., Zverinskaya, I. B., Nikitina, A. N., Roslyakov, V. Ya. & Khurgin, Yu. I. Izv. Akad. Nauk SSSR Sar. Khlm. 12: 2843, 1968.Google Scholar
  95. 95.
    Klyosov, A. A., Viet, N. V. & Berezin, I. V. Eur. J. Biochem. 59: 3, 1975.CrossRefGoogle Scholar
  96. 96.
    Hutton, J. P. & Wetmur, J. G. Biochem. Blophys, Res. Commun. 66: 942, 1975.CrossRefGoogle Scholar
  97. 97.
    Lachman, L. B. & Handschumacher, R. E. Biochem. Blophys. Res. Commun. 73: 1094, 1974.CrossRefGoogle Scholar
  98. 98.
    Weetall, H. H. & Vann, W. P. Biotechnol. Bioeng. 18: 105, 1976.CrossRefGoogle Scholar
  99. 99.
    Case, S. I. & Baker, R. F. Anal. Biochem. 64: 411, 1975.CrossRefGoogle Scholar
  100. 100.
    Elodi, P. Acta Physiol. Acad. Sci. Hung. 20: 311, 1961.Google Scholar
  101. 101.
    Barth, T., Jost, K. & Rychlik, I. Coll. Czechoslov. Chem. Commun. 38: 2011, 1973.Google Scholar
  102. 102.
    Horvath, C. Blochim. Blophys. Acta 358: 164, 1974.Google Scholar
  103. 103.
    Inagami, T. & Sturtevant, J. M. Blochlm. Blophys. Acta 38: 64, 1960.CrossRefGoogle Scholar
  104. 104.
    Mosolov, V. V., Afanasev, P. V., Dolgich, M. S. & Lushnikova, E. V. Biokhimiya (Russ.) 33: 1030, 1968.Google Scholar
  105. 105.
    Tan, K. H. & Lovrien, R. J. Biol. Cham. 247: 3278, 1972.Google Scholar
  106. 106.
    Tanizawa, K. & Bender, M. L. J. Biol. Chem. 249: 2130, 1974.Google Scholar
  107. 107.
    Wan, H. & Horvath, C. C. Biochem. Biophys. Acta 410: 135, 1975.Google Scholar
  108. 108.
    Myers, J. S., & Jakoby, W. B. Biochem. Biophys. Res. Commun. 51: 631, 1973.CrossRefGoogle Scholar
  109. 109.
    Hussain, Q. Z. & Newcomb, T. F. Proc. Soc. Exp. Biol. Med. 115: 301, 1963.Google Scholar
  110. 110.
    Castaneda-Agullo, M. & Del Castillo, L. M. J. Gen. Physiol. 41: 617, 1959.CrossRefGoogle Scholar
  111. 111.
    Bielski, B. H. J. & Freed, S. Biochim. Biophys. Acta 89: 314, 1964.Google Scholar
  112. 112.
    Tosa, T., Mori, T. & Chibata, I. Enzymologia 40: 49, 1971.Google Scholar
  113. 113.
    Ingalis, R. G., Squires, R. G. & Butler, L. G. Biotechnol. Bioeng. 17: 1627, 1975.CrossRefGoogle Scholar
  114. 114.
    Klibanov, A. M., Semenov, A. N., Samokhin, G. P. & Martinek, K. Bioorg. Khim. (Russ.) 3: No. 11, 1977.Google Scholar
  115. 115.
    Martinek, K., Klibanov, A. M., Samokhin, G. P., Semenov, A. N. & Berezin, I. V. Bioorg. Khim. (Russ.) 3: 696, 1977.Google Scholar
  116. 116.
    Martinek, K., Levashov, A. V. & Berezin, I. V. Dokl. Akad. Nauk SSSR (Russ.) 236: 920, 1977.Google Scholar
  117. 117.
    Butler, L. & Squires, R. Enzyme Technol. Digest 4(3): 108, 1975.Google Scholar
  118. 118.
    Schwabe, C. Biochemistry 8: 795, 1969.CrossRefGoogle Scholar
  119. 119.
    Kelly, S. J., Butler, L. G. & Squires, R. G. Enzyme Technol. Digest 5(2): 107, 1976.Google Scholar
  120. 120.
    Brandts, J. F. In “Structure and Stability of Biological Macromolecules” (S. N. Timasheff and G. D. Fasman, eds.) Marcel Dekker, New York, 1969, p. 213.Google Scholar
  121. 121.
    Davies, J. T. & Rideal, E. K. “Interfacial Phenomena”, Academic Press, New York, 1961.Google Scholar
  122. 122.
    Scholtens, J. R. & Bijsterbosch, B. H. FEBS Lett 62: 233, 1976.CrossRefGoogle Scholar
  123. 123.
    Cremonesi, P., Carrea, G., Ferrara, L. & Antonini, E. Biotechnol. Bioeng. 17: 1101, 1975.CrossRefGoogle Scholar
  124. 124.
    Buckland, B. C., Dunnill, P. & Lilly, M. D. Blotechhnol. Bioeng. 17: 815, 1975.CrossRefGoogle Scholar
  125. 125.
    Klibanov, A. M., Samokhin, G. P., Martinek, K. & Berezin, I. V. Biotechnol. Bioeng. 19: 211, 1977.CrossRefGoogle Scholar
  126. 126.
    Rajbhandary, V. Z., Young, R. J. & Khorana, H. G. J. Biol. Chem. 239: 3875, 1964.Google Scholar
  127. 127.
    Dehmlow, E. V. Angew. Chem. Int. Ed. 13: 170, 1974.CrossRefGoogle Scholar
  128. 128.
    Shinoda, K., Nakagawa, T., Tamamushi, B. I. & Isemura, T. “Colloidal Surfactants”, Academic Press, New York, 1963.Google Scholar
  129. 129.
    Fendler, J. H. & Fendler, E. J. “Catalysis in Micellar and Macromolecular Systems”, Academic Press, New York, 1975.Google Scholar
  130. 130.
    Mittal, K., ed. “Micellization, Solubilization and Microemulsions”, Plenum Press, New York, 1977.Google Scholar
  131. 131.
    Laidler, K. J. & Bunting, P. S. “The Chemical Kinetics of Enzyme Action”, Clarendon Press, Oxford, 1973.Google Scholar
  132. 132.
    Berezin, I. V. & Martinek, K. “The Physicochemical Fundamentals of Enzyme Catalysis”, High-School Press, Moscow, 1977.Google Scholar
  133. 133.
    Anson, M. L. Adv. Protein Chem. 2: 361, 1945.CrossRefGoogle Scholar
  134. 134.
    Davies, R. B., Abraham, E. P. & Dalgleish, D. G. Blocham. J. 143: 137, 1974.Google Scholar
  135. 135.
    Madsen, N. B. & Cori, C. F. J. Biol. Chem. 223: 1055, 1956.Google Scholar
  136. 136.
    Mattiasson, B., Danielson, B., Hermansson, B. & Mosbach, K. Febs Lett. 85: 203, 1978.CrossRefGoogle Scholar
  137. 137.
    Kitchell, B. B. & Henkens, R. W. Biochem. Blophys. Acta 534: 89, 1978.Google Scholar
  138. 138.
    Ayala, J. A. & Nieto, M. Biochem. J. 169: 371, 1978.Google Scholar
  139. 139.
    Martinek, K., Mozhaev, V. V. & Berezin, I. V. Dokl. Acad. Nauk SSSR 239: 483, 1978.Google Scholar
  140. 140.
    Mozhaev, V. V. & Martinek, K. “2nd All-Union Symposium on Immobilized Enzymes”, October 3-7, Abovyan, Armenian SSR, 1977.Google Scholar
  141. 141.
    Anfinsen, C. B. & Scheraga, H. A. Adv. Protein. Chem. 29: 205, 1975.CrossRefGoogle Scholar
  142. 142.
    Martinek, K., Mozhaev, V. V., Smirnov, M. D. & Berezin, I. V. Biotechnol. Bioeng. (in press).Google Scholar
  143. 143.
    Mozhaev, V. V., Smirnov, M. D., Martinek, K. & Berezin, I. V. Biqorg. Khim. (Russ.) (in press).Google Scholar
  144. 144.
    Sinha, N. K. & Light, A. J. Biol. Chem. 250: 8624, 1975.Google Scholar
  145. 145.
    Levinthal, C., Singer, E. R. & Fetherolf, K. (Proc. Natl. Acad. Sci. USA 48: 1230, 1962.CrossRefGoogle Scholar
  146. 146.
    Mozhaev, V. V., Martinek, K. & Berezin, I. V. Molekul. Biol. (Russ.) (in press).Google Scholar
  147. 147.
    Mozhaev, V. V., Martinek, K. & Berezin, I. V. Molekul. Biol. (Russ.) (in press).Google Scholar
  148. 148.
    Matthews, B. W., Weaver, L. H. & Kester, W. R. J. Biol. Chem. 249: 8030, 1974.Google Scholar
  149. 149.
    Ikai, A. Biochim. Biophys. Acta 445: 182, 1976.Google Scholar
  150. 150.
    Torchilin, V. P., Maksimenko, A. V., Smirnov, V. N., Berezin, I. V., Klibanov, A. M. & Martinek, K. Biochim. Biopkys. Acta 567:1, 1979.Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • K. Martinek
    • 1
  • V. V. Mozhaev
    • 1
  • I. V. Berezin
    • 1
  1. 1.Moscow State UniversityMoscowUSSR

Personalised recommendations