Alpha-Decay Systematics for Elements with 50 < Z < 83

  • K. S. Toth


From observing the slope of the mass-defect curve, one notes that most isotopes whose mass numbers are ≳ 140 are unstable toward a-emission. However, with the exception of naturally occurring 147Sm, α-decay was not observed for elements below bismuth until 30 years ago. This was due to the fact that the rate for a-decay is a very sensitive exponential function of the decay energy. The energy available for decay increases rapidly with mass, so that in the region above lead α-decay becomes a dominant decay mode. It was also known that, if one could produce nuclides sufficiently far to the neutron-deficient side of the β-stability line, then with nuclei Z < 83 would undergo α-particle emission. This was shown to be true experimentally in 1949 when Thompson, Ghiorso, Rasmussen and Seaborg1 reported the discovery of α-radioactivity in proton-rich isotopes of gold, mercury and the rare earths. Since that time, with the availability of new accelerators, the number of known α-active nuclides below bismuth has steadily increased.


Lead Isotope Mass Formula Neutron Number Mercury Isotope Dominant Decay Mode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S.G. Thompson, A. Ghiorso, J.O. Rasmussen and G.T. Seaborg, Phys. Rev. 76:1406 (1949).ADSCrossRefGoogle Scholar
  2. 2.
    H. Gauvin, Y. Le Beyec, J. Livett and J.L. Reyss, Ann. Phys. (Paris) 9:241 (1975).Google Scholar
  3. 3.
    E. Roeckl et al., Phys. Lett. 788:393 (1978).Google Scholar
  4. 4.
    R. Kirchner et al., Phys. Lett. 70B:150 (1977).ADSGoogle Scholar
  5. 5.
    E. Hagberg et al., Nucl. Phys. A293:l (1977).Google Scholar
  6. 6.
    S. Hofmann et al., Z. Physik A291:53 (1979).ADSGoogle Scholar
  7. 7.
    U.J. Schrewe et al., Z. Physik A288:189 (1979).ADSGoogle Scholar
  8. 8.
    C. Cabot et al., Z. Physik A287:71 (1978).ADSGoogle Scholar
  9. 9.
    E. Hagberg et al., Nucl. Phys. A318:29 (1979).ADSGoogle Scholar
  10. 10.
    K.S. Toth et al., Phys. Lett. 63B:150 (1976).ADSGoogle Scholar
  11. 11.
    S. Liran and N. Zeldes, At. Data Nucl. Data Tables 17:431 (1976).ADSCrossRefGoogle Scholar
  12. 12.
    W.D. Myers and W.J. Swiatecki, Nucl. Phys. 81:1 (1966); LBL Report No. UCRL-11980 (unpublished).Google Scholar
  13. 13.
    W.D. Myers, “Droplet Model of Atomic Nuclei”, Plenum Pub. Co., New York (1977).CrossRefGoogle Scholar
  14. 14.
    J. Jänecke, At. Data Nucl. Data Tables 17:455 (1976).ADSCrossRefGoogle Scholar
  15. 15.
    J.O. Rasmussen, Phys. Rev. 113:1593 (1959).ADSCrossRefGoogle Scholar
  16. 16.
    R.D. Macfarlane, J.O. Rasmussen and M. Rho, Phys. Rev. 134:B1196 (1964).ADSCrossRefGoogle Scholar
  17. 17.
    K.S. Toth, C.R. Bingham and W.-D. Schmidt-Ott, Phys. Rev. C10:1550 (1974).ADSGoogle Scholar
  18. 18.
    P. Hornshøj et al., Nucl. Phys. A230:365 (1974).ADSGoogle Scholar
  19. 19.
    Y.A. Ellis, K.S. Toth and H.K. Carter, Phys. Rev. C18:2713 (1978).ADSGoogle Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • K. S. Toth
    • 1
  1. 1.Oak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations