Hartree-Fock Approach to Mass Formula

  • J. M. Pearson
  • M. Farine
  • J. Côté
  • B. Rouben
  • G. Saunier


One of the problems of the semi-empirical mass formula is that functional forms differing only slightly, and fitted to the same data, will give significantly different extrapolations to the astrophysically interesting but experimentally inaccessible region far from the stability line; see, for example, the contribution of M. Arnould to this conference (1). A part of the difficulty stems from the so-called two-part macroscopic-microscopic approach, characterized by the separation into droplet-model (DM) and shell-model terms. Some synthesis of the two is desirable, and the Hartree-Fock (HF) method obviously suggests itself, since it takes shell-model effects into account automatically and self-consistently. Even better would be Hartree-Fock-Bogolyubov (HFB).


Nuclear Matter Mass Formula Drip Line Stability Line Muonic Atom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Arnould, Proceedings AMCO 6 Conference (1979).Google Scholar
  2. 2.
    F. Tondeur, Proceedings AMCO 6 Conference (1979).Google Scholar
  3. 3.
    W.D. Myers, ADNDT 17, 411 (1976).ADSCrossRefGoogle Scholar
  4. 4.
    H. von Groote, E. Hilf and K. Takahashi, ADNDT 17, 418 (1976).ADSCrossRefGoogle Scholar
  5. 5.
    S. Ludwig, H. von Groote, E. Hilf, A.G.W. Cameron, and J. Truran, Nucl. Phys. A203, 627 (1973).ADSGoogle Scholar
  6. 6.
    K.A. Brueckner, S.A. Coon, and J. Dabrowski, Phys. Rev. 168, 1184 (1968).ADSCrossRefGoogle Scholar
  7. 7.
    P.J. Siemens, Nucl. Phys. A141, 225 (1970).ADSGoogle Scholar
  8. 8.
    J. Côté, B. Rouben, and J.M. Pearson, Can. Journ. Phys. 51, 1619 (1973).ADSCrossRefGoogle Scholar
  9. 9.
    M. Haensel and P. Haensel, Zeit. f. Physik A279, 155 (1976).ADSGoogle Scholar
  10. 10.
    M. Farine, J.M. Pearson, and B. Rouben, Nucl. Phys. A304, 317 (1978).ADSGoogle Scholar
  11. 11.
    J. Côté and J.M. Pearson, Nucl. Phys. A304, 104 (1978).ADSGoogle Scholar
  12. 12.
    H. von Groote, Proc. of 3rd International Conference on Nuclei far from Stability, Cargese (1976), p. 595. (CERN 76–13).Google Scholar
  13. 13.
    W.D. Myers and H. von Groote, Phys. Lett. 61B, 126 (1976).ADSGoogle Scholar
  14. 14.
    W.D. Myers and W.J. Swiatecki, Ann. of Phys. 55, 395 (1969).ADSCrossRefGoogle Scholar
  15. 15.
    M. Ogawa, R. Brodo, K. Zell, P.J. Daly and P. Kleinheinz, Phys. Rev. Lett. 41,289 (1978).ADSCrossRefGoogle Scholar
  16. 16.
    H. von Groote, private communication.Google Scholar
  17. 17.
    J.P. Blaizot, D. Gogny and B. Grammaticos, Nucl. Phys. A265, 315 (1976).ADSGoogle Scholar
  18. 18.
    J.M. Pearson, B. Rouben, G. Saunier and F. Brut, Nucl. Phys. A317, 447 (1979).ADSGoogle Scholar
  19. 19.
    W.D. Myers, Droplet Model of Atomic Nuclei (Plenum, 1977).CrossRefGoogle Scholar
  20. 20.
    M. Beiner, H. Flocard, Nguyen von Giai and P. Quentin, Nucl. Phys. A238, 29 (1975).ADSGoogle Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • J. M. Pearson
    • 1
  • M. Farine
    • 1
  • J. Côté
    • 1
  • B. Rouben
    • 1
  • G. Saunier
    • 1
  1. 1.Laboratoire de Physique NucléaireUniv. de MontréalMontréalCanada

Personalised recommendations