Present Status of Hartree-Fock Calculations of Nuclear Binding Energies Using Effective Interactions

  • P. Quentin


At the AMCO-5 conference, some accounts of successful descriptions of binding energies through Hartree-Fock calculations using effective interactions have been given. Since then, many works have been performed in two directions: (i) studies of the reliability of the approximations made, having in mind particularly the problem of extrapolations to unknown nuclear regions, (ii) attempts to improve the flexibility or the feasibility of such calculations.


Spherical Nucleus Shell Correction Effective Force Magic Nucleus Skyrme Force 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    P. Quentin and H. Flocard, Ann. Rev. Nucl. Part. Sci. 28:523 (1978).ADSCrossRefGoogle Scholar
  2. [2]
    J.W. Negele, Phys. Rev. C1: 1260 (1970).ADSGoogle Scholar
  3. [3]
    X. Campi and D.W.L. Sprung, Nucl. Phys. A194:401 (1972).ADSGoogle Scholar
  4. [4]
    M. Beiner and R.J. Lombard, Ann. Phys. (N.Y.) 86: 262 (1974)ADSCrossRefGoogle Scholar
  5. [4a]
    M. Beiner, R.J. Lombard and D. Mas, Nucl. Phys. A249:1 (1975)ADSGoogle Scholar
  6. [4b]
    M. Beiner, R.J. Lombard and D. Mas,At. Data Nucl. Data Tables 17:450 (1976).ADSCrossRefGoogle Scholar
  7. [5]
    F. Tondeur, Nucl. Phys. A303:185 (1978) and these proceedings.ADSGoogle Scholar
  8. [6]
    D. Gogny, in “Nuclear Self-consistent fields” eds. G. Ripka and M. Porneuf, p. 333 (Amsterdam, North-Holland, 1975).Google Scholar
  9. [7]
    B. Rouben, J.M. Pearson and G. Saunier, Phys. Lett. B42:385 (1972).ADSGoogle Scholar
  10. [8]
    R.K. Lassey, M.R.P. Manning and A.B. Volkov, Can. J. Phys:2522 (1973).Google Scholar
  11. [9]
    M. Beiner, H. Flocard, Nguyen Van Giai and P. Quentin, Nucl. Phys. A238:29 (1975).ADSGoogle Scholar
  12. [10]
    J.W. Negele and D. Vautherin, Phys. Rev. C11:1031 (1975).ADSGoogle Scholar
  13. [11]
    O. Bohigas, A.M. Lane and J. Martorell, Phys. Reports 5:267 (1979).ADSCrossRefGoogle Scholar
  14. [12]
    D.W.L. Sprung, Adv. Nucl. Phys. 5:225 (1972).Google Scholar
  15. [13]
    F. Stancu, D.M. Brink and H. Flocard, Phys. Lett. B 68:108 (1977).ADSCrossRefGoogle Scholar
  16. [14]
    B. Rouben, F. Brut, J.M. Pearson and G. Saunier, Phys. Lett. B70:6 (1977).ADSGoogle Scholar
  17. [15]
    D. Vautherin and D.M. Brink, Phys. Rev. C5:626 (1972).ADSGoogle Scholar
  18. [16]
    C. Gustafson, I.-L. Lamm, B. Nilsson and S.G. Nilsson, Ark. Fys. 36:613 (1967).Google Scholar
  19. [17]
    M. Brack, P. Quentin and D. Vautherin, in “Superheavy elements” ed. M.A.K. Lodhi, p. 309 (New York, Pergamon, 1978).Google Scholar
  20. [18]
    B. Grammaticos, “Applications de la théorie du champ self-consistant en physique nucléaire”, thesis Orsay # 1921 (1977).Google Scholar
  21. [19]
    H. Flocard, private communication (1977).Google Scholar
  22. [20]
    M. Waroquier, J. Sau, K. Heyde, P. Van Is acker and H. Vincx, Phys. Rev. C19:1983 (1979).Google Scholar
  23. [21]
    D.W.L. Sprung, S.G. Lie, M. Vallières and P. Quentin, Nucl. Phys. A, in press (1979).Google Scholar
  24. [22]
    A. Bonaccorso, M. Di Toro and G. Russo, Phys. Lett. B72.: 27 (1977).ADSGoogle Scholar
  25. [23]
    P. Hoodboy and J.W. Negele, Nucl. Phys. A288: 23 (1977).ADSGoogle Scholar
  26. [24]
    J. Cugnon, H. Doubre, H. Flocard and M.S. Weiss to be published. This method in fact is directly deduced from the method used to solve TDHF equations described in H. Flocard, S.E. Koonin and M.S. Weiss, Phys. Rev. C17: 1682 (1978).ADSGoogle Scholar
  27. [25]
    P.H. Heenen, P. Boncha and H. Flocard, in “Time-dependent Hartree-Fock Method” eds. P. Bonche, B. Giraud and P. Quentin, p. 175 (Editions de Physique, Orsay, 1979).Google Scholar
  28. [26]
    J. Libert, P. Quentin and H. Flocard, to be published.Google Scholar
  29. [27]
    A.H. Wapstra and N.B. Grove, Nucl. Data A9: 269 (1971).Google Scholar
  30. [28]
    H. Flocard, P. Quentin, A.K. Kerman and D. Vautherin, Nucl. Phys. A203:433 (1973).ADSGoogle Scholar
  31. [29]
    V.M. Strutinsky, Nucl. Phys. A95: 420 (1967)ADSGoogle Scholar
  32. [29a]
    V.M. Strutinsky, Nucl. Phys. A122: 1 (1968).ADSGoogle Scholar
  33. [30]
    M. Brack and P. Quentin, Phys. Lett. B56: 421 (1975).ADSGoogle Scholar
  34. [31]
    R.K. Bhaduri, Phys. Rev. Lett. 39/329 (1977).Google Scholar
  35. [32]
    M. Durand, M. Brack and P. Schuck, Z. für Phys. A286:381 (1978),ADSGoogle Scholar
  36. [33]
    J. Bartel, P. Schuck, M. Durand, R.K. Bhaduri and M. Brack, to be published.Google Scholar
  37. [34]
    J. Bartel and M. Vallières, private communicationGoogle Scholar
  38. [35]
    A.K. Dhutta, R.K. Bhaduri, M.K. Srivastava and M. Vallières Physics department preprint, McMaster University (1979).Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • P. Quentin
    • 1
  1. 1.Institut Laue-Langevin, 156XGrenoble CedexFrance

Personalised recommendations