Nuclear Masses from First Principles

  • Hermann G. Kümmel


In this talk I want to review the present status of the calculation of nucleon masses from “first principles”. How “first” the principles are, depends on one’s viewpoint. I shall take the position that we want to compute nuclear properties from two body nucleon-nucleon (NN) potentials which in turn have been fixed by optimizing the description of two nucleon data (scattering and bound state of the deuteron). What the theorist then has to do is to solve the A = N + Z body problem as good as he can and sell the results to the experimentalists. Such a procedure is legitimate as long as the following two points are observed:
  1. i)

    it is made sure that the (necessarily approximate) procedure used in many body theory converges

  2. ii)

    the basic concept of using two body potentials always is kept in mind: knowing that in fact there is meson exchange instead of potentials and baryonic resonances in addition to mere nucleons, a complete agreement between such a simple description and nature cannot be expected. Yet it is of course interesting and important to know to what extent “pure many nucleon theory” is valid.



Nuclear Matter Body Problem Soft Core Schrodinger Equation Body Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Kümmel, K.H. Lührmann, J.G. Zabolitzky Phys. Reports 36C 1 (1978)ADSCrossRefGoogle Scholar
  2. 2.
    D.J. Thouless The Quantum Mechanics of Many Body Systems 2nd Ed., Academic Press, New York and London, 1972Google Scholar
  3. 3.
    J.G. Zabolitzky Nucl. Phys. A228 272, 284 (1974)ADSGoogle Scholar
  4. 4.
    R. Offermann, W. Ey, H. Kümmel Nucl. Phys. A273 349 (1976)ADSGoogle Scholar
  5. 5.
    W. Ey Nucl. Phys. A296 189 (1978)ADSGoogle Scholar
  6. 6.
    Y.E. Kim in Few Body Nucleon Physics, Internat. Centre for Theoretical Physics, Trieste, 1978Google Scholar
  7. 7.
    V.R. Pandharipande, R.B. Wiringa Rev. Mod. Phys. (in press)Google Scholar
  8. 8.
    R.A. Malfliet, J.A. Tjon Ann. Phys. (NY) 61 425 (1970)ADSCrossRefGoogle Scholar
  9. 9.
    R.A. Brandenburg, Y.E. Kim, A. Tubis Phys. Rev. Cl2 1368 (1975)ADSGoogle Scholar
  10. 10.
    A. Lagergne, C. Gignoux Nucl. Phys. A203 597 (1973)ADSGoogle Scholar
  11. 11.
    W. Glöckle, R. Offermann Phys. Rev. C16 2o39 (1977)Google Scholar
  12. 12.
    M.M. Giannini, D. Drechsel, H. Arenhövel, V. Tornow preprint, Mainz 1979Google Scholar
  13. 13.
    R.A. Brandenburg, S.A. Coon, P.U. Sauer Nucl. Phys. A294 305 (1978)ADSGoogle Scholar
  14. 14.
    A. Reid Ann. Phys. (NY) 50 411 (1968)ADSCrossRefGoogle Scholar
  15. 15.
    R. de Tourreil, D.W.L. Sprung Nucl. Phys. A201 193 (1973)ADSGoogle Scholar
  16. 16.
    J.G. Zabolitzky, W. Ey Nucl. Phys. (in print)Google Scholar
  17. 17.
    K. Emrich, J.G. Zabolitzky, K.H. Lührmann Phys. Rev. C16 1650 (1977)ADSGoogle Scholar
  18. 18.
    J.C. Owen preprint 1978Google Scholar
  19. 19.
    B. Day private communicationGoogle Scholar
  20. 20.
    K. Holinde NORDITA preprint 1979Google Scholar
  21. 21.
    K. Kotthoff, R. Machleidt, D. Schütte Nucl. Phys. A264 484 (1976)ADSGoogle Scholar
  22. 22.
    D.W.E. Blatt, B.H.J. McKellar Phys. Rev. C1 614 (1974)Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • Hermann G. Kümmel
    • 1
  1. 1.Institut für theoretische PhysikRuhr-Universität Bochum and Max Planck Institut für ChemieMainzGermany

Personalised recommendations