Advertisement

Masses of Medium Weight Nuclei by Transfer Reactions

  • R. C. Pardo

Abstract

In the last decade a large experimental program has been in progress at MSU with the aim of testing the isobaric mass multiplet equation (IMME) first proposed by Wigner.l This relation holds that the masses of the members of an isospin multiplet of mass A and isospin T can be expressed in a simple quadratic form:
$$M(A,{T_z}) = a + b{T_Z} + cT_z^2$$
, where Tz is the isospin projection. There are numerous derivations of this formula in the literature,2,3 which employ perturbation methods to expand the nuclear Hamiltonian. In the above form, the lowest isospin multiplet which can be used to test the IMME is T = 3/2.

Keywords

Transfer Reaction Differential Cross Section Shell Closure Target Thickness Mass Excess 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. P. Wigner, Proceedings of the Robert A. Welch Foundation Conference on Chemical Research, Edited by W. D. Millikan.Google Scholar
  2. 2.
    G. T. Garvey, in Nuclear Isospin, J. D. Anderson, S. D. Bloom, J. Cerny, and W. W. True, eds., Academic Press, New York (1969).Google Scholar
  3. 3.
    J. Janecke, in “Isospin in Nuclear Physics,” D. H. Wilkinson, Ed., North-Holland Publishing Co., Amsterdam (1969).Google Scholar
  4. 4.
    W. Benenson and E. Kashy, Rev. Mod. Phys. 51:527 (1979).ADSCrossRefGoogle Scholar
  5. 5.
    E. Kashy, VI Conference on Atomic Masses and Fundamental Constants, E. Lansing, MI, 1979.Google Scholar
  6. 6.
    E. Kashy, W. Benenson, and D. Meuller, Measurement of Nuclear Masses Far From Stability in: “Atomic Masses and Fundamental Constants 5”, J. H. Sanders and A. H. Wapstra, eds., Plenum Press, New York (1976).Google Scholar
  7. 7.
    P. M. Endt and C. Van der Leun, Nucl. Phys. A310:l (1978).Google Scholar
  8. 8.
    P. Miller, H. Laumer, G. Stork, M. Mallory, H. Blosser, and J. A. Nolen, Jr., Michigan State University Cyclotron Laboratory Annual Report, (1977–78).Google Scholar
  9. 9.
    T. S. Bhatia, H. Hafner, J. A. Nolen, Jr., W. Saathoff, R. Sehuhmacher, R. E. Tribble, G. J. Wagner, C. A. Weidner, Phys. Lett. 76B-.562 (1978).Google Scholar
  10. 10.
    G. C. Ball, W. G. Davies, J. S. Forster, and H. R. Andrews, Phys. Lett. 60B:265 (1976).ADSGoogle Scholar
  11. 11.
    F. Naulin, C. Detraz, M. Bernas, E. Kashy, M. Langevin, F. Pougheon, and P. Roussel, Phys. Rev. C 17:830 (1978).ADSCrossRefGoogle Scholar
  12. 12.
    P. Kleinheinz, S. Lunardi, M. Ogawa, and M. R. Maier, Z. Physik A284:351 (1978).ADSGoogle Scholar
  13. 13.
    W. P. Alford, R. E. Anderson, P. A. Batay-Csorba, R. A. Emigh, D. A. Lind, P. A. Smith, and D. C. Zafiatos, Bull. Am. Phys. Soc. 23:962 (1978).Google Scholar
  14. 14.
    I. Adam and K. S. Toth, Phys. Rev. 180:1207 (1969).ADSCrossRefGoogle Scholar
  15. 15.
    R. Firestone, R. C. Pardo, and W. C. McHarris, Bull. Am. Phys. Soc. 41:289 (1978).Google Scholar
  16. 16.
    A. Bohr and B. R. Mottelson, Nuclear Structure, Vol. I, Benjamin, Reading, Mass. (1969).Google Scholar
  17. 17.
    F. D. Becchetti and G. W. Greenlees, Phys. Rev. 182:1190 (1969).ADSCrossRefGoogle Scholar
  18. 18.
    P. D. Kunz, University of Colorado, unpublished.Google Scholar
  19. 19.
    P. Kleinheinz, R. Broda, P. J. Daley, S. Lunardi, M. Ogawa, and J. Blomqvist, Z. Physik A290:279 (1979).ADSGoogle Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • R. C. Pardo
    • 1
  1. 1.Cyclotron LaboratoryMichigan State UniversityE. LansingUSA

Personalised recommendations