Advertisement

Precise γ-Ray Energies from Radionuclide Decay and the (n,γ) Reaction: Revised Values for The Neutron Mass and Selected Neutron Binding Energies

  • R. C. Greenwood
  • R. G. Helmer
  • R. J. Gehrke
  • R. E. Chrien

Abstract

Precise measurements of γ-ray energies up to 3.5 MeV from several radionuclides have been made using Ge(Li) detectors. Also, the 1H(n,γ) reaction γ-ray energy was measured and from it a value was obtained for the deuteron binding energy. Combining this Sn(2H) with published mass differences, values were obtained for the neutron binding energies of 3H, 13C, 14C and 15N, and for the neutron mass excess. This value of Sn(15N) was used in conjunction with measured γ-ray energy differences to obtain energies of selected γ rays from the 15N(n,γ) reaction up to 10.8 MeV.

Keywords

Mass Difference Neutron Capture Calibration Energy Slow Neutron Neutron Binding Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. G. Helmer, R. C. Greenwood and R. J. Gehrke, Atomic Masses and Fundamental Constants, Vol. 5, SPIed. by J. H. Sanders and A. H. Wapstra, (Plenum, New York, 1976), p. 30.Google Scholar
  2. 2.
    E. G. Kessler, R. D. Deslattes, A. Henins and W. C. Sauder, Phys. Rev. Lett. 40, 171 (1978).ADSCrossRefGoogle Scholar
  3. 3.
    R. G. Helmer, R. C. Greenwood and R. J. Gehrke, Nucl. Instrum. Methods 155, 189 (1978).ADSCrossRefGoogle Scholar
  4. 4.
    R. C. Greenwood, R. G. Helmer and R. J. Gehrke, Nucl. Instrum. Methods 159, 465 (1979).ADSCrossRefGoogle Scholar
  5. 5.
    R. C. Greenwood and R. E. Chrien, Proc. 3rd Intern. Symp. on Neutron Capture Gamma-Ray Spectroscopy and Related Topics (Plenum, New York, 1979), p. 618.CrossRefGoogle Scholar
  6. 6.
    L. G. Smith, Phys. Rev. C 4, 22 (1971).ADSCrossRefGoogle Scholar
  7. 7.
    L. G. Smith and A. H. Wapstra, Phys. Rev. C 11, 1392 (1975).ADSCrossRefGoogle Scholar
  8. 8.
    A. H. Wapstra and K. Bos, At. Data Nucl. Data Tables 19, 177 (1977); ibid 20, 1 (1977).ADSGoogle Scholar
  9. 9.
    E. R. Cohen and B. N. Taylor, J. Phys. Chem. Ref. Data 2, 663 (1973).ADSCrossRefGoogle Scholar
  10. 10.
    G. L. Borchert, W. Scheck and K. P. Wieder, Z. Naturforsch. 30a, 274 (1975).ADSGoogle Scholar
  11. 11.
    G. L. Borchert, Z. Naturforsch. 31a, 387 (1976).ADSGoogle Scholar
  12. 12.
    J. J. Reidy, The Electromagnetic Interaction in Nuclear Spectroscopy, ed. by W. D. Hamilton, (North-Holland, Amsterdam, 1975), p. 873.Google Scholar
  13. 13.
    G. L. Borchert, W. Scheck and O. W. B. Schult, Atmic Masses and Fundamental Constants, Vol. 5, ed. by J. H. Sanders and A. H. Wapstra, (Plenum, New York, 1976) p. 42.Google Scholar
  14. 14.
    J. Kern and W. Schwitz, Nucl. Instrum. Methods 151, 549 (1978).ADSCrossRefGoogle Scholar
  15. 15.
    M. A. Ludington, J. J. Reidy, M. L. Wiedenbeck, D. J. McMillan, J. H. Hamilton and J. J. Pinajian, Nucl. Phys. A119, 398 (1968): J. J. Reidy, private communication (1961).ADSGoogle Scholar
  16. 16.
    W. Beer and J. Kern, Nucl. Instrum. Methods 117, 183 (1974).ADSCrossRefGoogle Scholar
  17. 17.
    W. Schwitz and J. Kern, Proc. 2nd Intern. Symp. on Neutron Capture Gamma Ray Spectroscopy and Related Topics (RCN, Petten, 1975), p. 697.Google Scholar
  18. 18.
    E. G. Kessler Jr., L. Jacobs, W. Schwitz and R. D. Deslattes, Nucl. Instrum. Methods 160, 435 (1979).ADSCrossRefGoogle Scholar
  19. 19.
    O. Pillar, W. Beer and J. Kern, Nucl. Instrum. Methods 107, 61 (1973).ADSCrossRefGoogle Scholar
  20. 20.
    G. L. Borchert, W. Scheck and O. W. B. Schult, Nucl. Instrum. Methods 124, 107 (1975).ADSCrossRefGoogle Scholar
  21. 21.
    U. Gruber, R. Koch, B. P. Maier and O. W. B. Schult; Z. Naturforch. 20a, 929 (1965).ADSGoogle Scholar
  22. 22.
    R. W. Jewell, W. John, R. Massey and B. G. Saunders, Nucl. Instrum. Methods 62, 68 (1968).ADSCrossRefGoogle Scholar
  23. 23.
    W. J. Prestwich, T. J.. Kennett, L. B. Hughes and J. Fiedler, Can. J. Phys. 43, 2086 (1965).ADSCrossRefGoogle Scholar
  24. 24.
    R. C. Greenwood and W. W. Black, Phys. Lett. 21, 702 (1966).ADSCrossRefGoogle Scholar
  25. 25.
    H. W. Taylor, N. Neff and J. D. King, Phys Lett. 24B, 659 (1967).ADSGoogle Scholar
  26. 26.
    R. G. Helmer, R. J. Gehrke and R. C. Greenwood, Nucl. Instrum. Methods 123, 51 (1975).ADSCrossRefGoogle Scholar
  27. 27.
    Ts. Vylor, K. Ya Gromov, A. I. Ivanov, B. P. Osipenko, E. A. Frolov, V. G. Chumin, A. F. Shchus and M. F. Yudin, Sov. J. Nucl. Phys. 28, 585 (1978).Google Scholar
  28. 28.
    R. C. Greenwood, Phys. Lett. 27B, 274 (1968).ADSGoogle Scholar
  29. 29.
    R. G. Helrner, J. W. Starner and M. E. Bunker, Nucl. Instrum. Methods 158, 489 (1979).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • R. C. Greenwood
    • 1
  • R. G. Helmer
    • 1
  • R. J. Gehrke
    • 1
  • R. E. Chrien
    • 2
  1. 1.Idaho National Engineering LaboratoryEG&G Idaho, Inc.Idaho FallsUSA
  2. 2.Brookhaven National LaboratoryUptonUSA

Personalised recommendations