Precision Measurements of the Triplet and Singlet Positronium Decay Rates

  • D. W. Gidley
  • A. Rich
  • P. W. Zitzewitz


Positronium (Ps) is the hydrogen-like bound state of the electron and its antiparticle, the positron. Positronium is an attractive testing ground for the theory of quantum electrodynamics (QED) since its constituent particles interact to high order only through the electromagnetic interaction. Fundamental tests of QED involving Ps may be classified as measurements of either fine structure in the n=1 or n=2 levels or of annihilation decay properties. After a brief overview, the precision measurement of the triplet and singlet ground state decay rates will be discussed.


Decay Rate Lamb Shift Collisional Quenching Lifetime Spectrum Channel Electron Multiplier 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P.O. Egan, V.W. Hughes, and M.H. Yam, Phys. Rev. A15, 251 (1977).ADSGoogle Scholar
  2. 2.
    S.R. Lundeen and F.M. Pipken, Phys. Rev. Lett. 34, 1368 (1975) andADSCrossRefGoogle Scholar
  3. 2a.
    D.A. Andrews and G. Newton, Phys. Rev. Lett. 37, 1254 (1976).ADSCrossRefGoogle Scholar
  4. 3.
    G.W. Erickson, Phys. Rev. Lett. 27, 780 (1971) andADSCrossRefGoogle Scholar
  5. 3a.
    P.J. Mohr, Phys. Rev. Lett. 34, 1050 (1975).Google Scholar
  6. 4.
    K.F. Canter, A.P. Mills Jr., and S. Berko, Phys. Rev. Lett. 34, 177 (1975).ADSCrossRefGoogle Scholar
  7. 5.
    A.P. Mills Jr., S. Berko, and K.F. Canter, Phys. Rev. Lett. 34, 1541 (1975).ADSCrossRefGoogle Scholar
  8. 6.
    A.P. Mills Jr. and S. Berko, Phys. Rev. Lett. 18, 420 (1967).ADSCrossRefGoogle Scholar
  9. 7.
    K. Marko and A. Rich, Phys. Rev. Lett. 33, 980 (1974).ADSCrossRefGoogle Scholar
  10. 8.
    D.W. Gidley, P.W. Zitzewitz, K.A. Marko, and A. Rich, Phys. Rev. Lett. 37, 729 (1976).ADSCrossRefGoogle Scholar
  11. 9.
    W.E. Caswell, G.P. Lepage, and J. Sapirstein, Phys. Rev. Lett. 38, 488 (1977).ADSCrossRefGoogle Scholar
  12. 10.
    W.E. Caswell and G. P. Lepage, Phys. Rev. A20, 36 (1979).ADSGoogle Scholar
  13. 11.
    D.W. Gidley, A. Rich, P.W. Zitzewitz, and D.A.L. Paul, Phys. Rev. Lett. 40, 737 (1978).ADSCrossRefGoogle Scholar
  14. 12.
    T.C. Griffith, G.R. Heyland, K.S. Lines, and T.R. Twomey, J. Phys. B 11, L743 (1978).ADSCrossRefGoogle Scholar
  15. 13.
    D.W. Gidley and P.W. Zitzewitz, Phys. Letters A69, 97 (1978).ADSGoogle Scholar
  16. 14.
    R. Paulin and G. Ambrosino, J. Phys. (Paris) 29, 263 (1968).Google Scholar
  17. 15.
    I. Harris and L. Brown, Phys. Rev. 105, 1656 (1957).ADSMATHCrossRefGoogle Scholar
  18. 16.
    K. Cung, A. Devoto, T. Fulton, and W. Repko, Michigan State University preprint, March, 1978.Google Scholar
  19. 17.
    Y. Tomozawa, submitted to Annals of Physics.Google Scholar
  20. 18.
    J. R. Freeling, Ph.D. Thesis, University of Michigan, 1979.Google Scholar
  21. 19.
    E.P. Theriot Jr., R.H. Beers, and V.W. Hughes, Phys. Rev. Lett. 18, 767 (1967).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • D. W. Gidley
    • 1
  • A. Rich
    • 1
  • P. W. Zitzewitz
    • 1
  1. 1.Randall Laboratory of PhysicsUniversity of MichiganAnn ArborUSA

Personalised recommendations