Advertisement

Masses from Inhomogeneous Partial Difference Equations; A Shell-Model Approach for Light and Medium-Heavy Nuclei

  • Joachim Jänecke

Abstract

Any mass equation M(N,Z) may be expressed as a special solution of an inhomogeneous partial difference equation. One only has to introduce an appropriate difference operator D and calculate κ(N,Z) = D M(N,Z). The inhomogeneous partial difference equation
$${\text{D M}}\left( {{\text{N}},{\text{Z}}} \right){\text{ }} = {\text{ }}\kappa \left( {{\text{N}},{\text{Z}}} \right)$$
(1)
contains the original mass equation as a special solution. The most general solution of eq. (1) will include solutions of the homogeneous equation which can, for example, be used to generate shell correction terms.

Keywords

Symmetry Energy Coulomb Energy Mass Equation Nuclear Charge Radius Mass Prediction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Jänecke and B. P. Eynon, Nucl. Phys. A243 (1975) 326ADSGoogle Scholar
  2. 2.
    J. Jänecke and B. P. Eynon, At. Data and Nucl. Data Tables 17 (1976) 467CrossRefGoogle Scholar
  3. 3.
    G. T. Garvey, W. J. Gerace, R. L. Jaffe, I. Talmi and I. Kelson, Rev. Mod. Phys. 41 (1969) S1ADSCrossRefGoogle Scholar
  4. 4.
    J. Jänecke, At. Data and Nucl. Data Tables 17 (1976) 455ADSCrossRefGoogle Scholar
  5. 5.
    J. Jänecke and H. Behrens, Phys. Rev. C9 (1974) 1276ADSGoogle Scholar
  6. 6.
    K. T. Hecht, Nucl. Phys. A104 (1968) 280ADSGoogle Scholar
  7. 7.
    W.J. Courtney and J. D. Fox, At. Data and Nucl. Data Tables 15 (1975) 141ADSCrossRefGoogle Scholar
  8. 8.
    A. de-Shalit and I. Talmi, Nuclear Shell Theory (Academic Press, N.Y., 1963)Google Scholar
  9. 9.
    R. K. Bansal and J. B. French, Phys. Lett. 11 (1964) 145;ADSCrossRefGoogle Scholar
  10. 9a.
    L. Zamick, Phys. Lett. 19 (1965) 580ADSCrossRefGoogle Scholar
  11. 10.
    A. H. Wapstra and K. Bos, At. Data and Nucl. Data Tables 19 (1977) 177ADSCrossRefGoogle Scholar
  12. 11.
    J. Jänecke, in Isospin in Nuclear Physics, ed. D. H. Wilkinson, North-Holland (1969) p. 298Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • Joachim Jänecke
    • 1
  1. 1.The University of MichiganAnn ArborUSA

Personalised recommendations