Advertisement

The Shell Correction Method and Its Application to Nuclear Masses

  • Ingemar Ragnarsson

Abstract

The calculation of nuclear masses within the Nilsson-Strutinsky method is briefly reviewed. In numerical calculations, the standard liquid drop or droplet model is used for the macroscopic energy and the microscopic energy is calculated from the single-particle orbitals of the modified oscillator potential. Results for nuclei with A≳90 are presented. Except for some closed shell nuclei, the discrepancies between experimental and theoretical shell effects seldom exceed 1 MeV. For medium-heavy nuclei and outside the regions where the parameters have been fitted, the general trends appear to be much better described within the liquid drop than within the droplet model.

Keywords

Liquid Drop Neutron Number Nuclear Mass Shell Correction Shell Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W.D. Myers and W.J. Swiatecki, Ark. Fys. 36 (1967) 343.Google Scholar
  2. 2.
    W.D. Myers, Droplet Model of Atomic Nuclei (1977 IFI/Plenum-New York) and At. Data and Nucl. Data Tables 17, (1976) 411.CrossRefGoogle Scholar
  3. 3.
    W.D. Myers and W.J. Swiatecki, Nucl. Phys. 81 (1966) 1.Google Scholar
  4. 4.
    S.G. Nilsson, C.F. Tsang, A. Sobiczewski, Z. Szymański, S. Wycech, C. Gustafsson, I.L. Lamm, P. Möller and B. Nilsson, Nucl. Phys. A131 (1969) 1.ADSGoogle Scholar
  5. 5.
    V.M. Strutinsky, Nucl. Phys. A95 (1967) 420.ADSGoogle Scholar
  6. 6.
    I. Ragnarsson, Proc. Int. Symp. on Future Directions in Studies of Nuclei far from Stability, Vanderbilt University, 9–12 Sept. 1979.Google Scholar
  7. 7.
    A.H. Wapstra and N.B. Gove, At. Data and Nucl. Data Tables 9 (1971) 265.Google Scholar
  8. 8.
    I. Ragnarsson, Proc. Conf. on Properties of Nuclei far from the Region of Beta Stability, Leysin, 1970 (CERN 70–30, 1970) 847.Google Scholar
  9. 9.
    I. Ragnarsson, A. Sobiczewski, R.K. Sheline, S.E. Larsson and B. Nerlo-Pomorska, Nucl. Phys. A233 (1974) 329.ADSGoogle Scholar
  10. 10.
    M. Brack, J. Damgaard, A.S. Jensen, H.C. Pauli, V.M. Strutinsky and C.Y. Wong, Rev. Mod. Phys. 44 (1972) 320.ADSCrossRefGoogle Scholar
  11. 11.
    M. Epherre, G. Audi, C. Thibault, R. Klapisch, G. Huber, F. Touchard, H. Wollnik, Phys. Rev. C19 (1979) 1504.Google Scholar
  12. 12.
    R.C. Jared, H. Nifenecker and S.G. Thompson, Proc. Symp. on the Physics and Chemistry of Fission, Rochester 1973 (IAEA, Vienna) Vol. 2, p. 211.Google Scholar
  13. 13.
    H. Wollnik, F.K. Wohn, K.D. Wünsch and G. Jung, Nucl. Phys. A291 (1977) 355.ADSGoogle Scholar
  14. 14.
    R.E. Azuma, G.L. Borchert, L.C. Carraz, P.G. Hansen, B. Jonson, S. Mattsson, O.B. Nielsen, G. Nyman, I. Ragnarsson and H.L. Ravn, Phys. Lett. B, in press.Google Scholar
  15. 15.
    P. Arve and I. Ragnarsson, current work.Google Scholar
  16. 16.
    R. Klapisch, priv. comm., 1979.Google Scholar
  17. 17.
    R.K. Sheline, I. Ragnarsson and S.G. Nilsson, Phys. Lett. 41B (1972) 115.ADSGoogle Scholar
  18. 18.
    T.A. Khan, W.D. Lauppe, K. Sistemich, H. Lawin, G. Sadler and H.A. Selic, Z. Physik A283 (1977) 105.ADSGoogle Scholar
  19. 19.
    A.H. Wapstra and K.H. Bos, At. Data and Nucl. Data Tables 19 (1977) 177.ADSCrossRefGoogle Scholar
  20. 20.
    C. Ekström, G. Wannberg and J. Heinemeier, Phys. Lett. 76B (1978) 565;ADSGoogle Scholar
  21. 20a.
    C. Ekström, L. Robertsson, G. Wannberg and J. Heinemeier, Phys. Scripta 19 (1979) 516.ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • Ingemar Ragnarsson
    • 1
  1. 1.CERNGenevaSwitzerland

Personalised recommendations