Aspects of Cell Architecture and Locomotion

  • J. V. Small
  • J. E. Celis
  • G. Isenberg
Part of the NATO Advanced Study Institutes Series book series (NSSA, volume 31)


Three morphologically and biochemically distinct filament types may be recognised in the cytoplasm of eukaryotic cells: actin filaments (or microfilaments), microtubules and 10nm filaments (Fig. 1) Although these filaments were recognised in many electron microscope studies of the last decade it is only relatively recently that their general and coextensive invasion of the cytosol has become apparent. From studies, primarily on cultured cells, by immunofluorescence microscopy and whole mount electron microscopy it has been shown that each filament type forms a characteristic and extensive network within the cell. Under specific conditions the membrane and soluble cellular components may be removed (for example with detergents) leaving the cell nucleus and the filament networks as the sole remaining components. Since the gross cell form is maintained in such preparations (Figs. 3 and 8), the filament systems together have been referred to as the “cytoskeleton”, with the reservation, however, that the individual roles played by the filaments are not solely skeletal. In the present report we shall attempt to review briefly the current status of knowledge concerning the distributions and functions of the individual filament systems confining the survey in the main to cultured cells. Included in this discussion will be the possible mechanisms underlying cell locomotion and changes in the cytoskeleton associated with transformation. Finally, brief mention will also be made of the application of microinjection methods in probing the different functions of the components of the cytoskeleton.


Actin Filament Stress Fibre Tissue Culture Cell Filament Type Cell Locomotion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    Porter, K.R. (1970). Cytoplasmic microtubules and their function. In: “Principles of Biomolecular Organisation” Ciba Fdn Symp. (eds., G.E.W. Wolstenholme and M. O’Connor), p. 308. London: Churchill.Google Scholar
  2. 2).
    Roberts, K. (1974). Cytoplasmic microtubules and their functions. Progr. in Biophys. and Molec. Biol., 28, 371.CrossRefGoogle Scholar
  3. 3).
    Sale, W.S. and Gibbons, I.R. (1979). Study of the mechanism of the dynein cross-bridge cycle in sea urchin sperm flagella. J. Cell Biol., 82, 291.PubMedCrossRefGoogle Scholar
  4. 4).
    Vasiliev, J.M. and Gelfand, I.M. (1977). Mechanism of morphogenesis in cell cultures. Int. Rev. Cytol., 50, 159.PubMedCrossRefGoogle Scholar
  5. 5).
    de Brabander, M., de Mey, J., van de Veire, R., Aerts, F. and Geuens, G. (1977). Microtubules in mammalian cell shape and surface modulation: an alternative hypothesis. Cell Biol. Int. Rep., 1, 453.PubMedCrossRefGoogle Scholar
  6. 6).
    Fuller, G.M. and Brinkley, B.R. (1976). Structure and control of assembly of cytoplasmic microtubules in normal and transformed cells. J. Supramolec. Struct., 5, 497.CrossRefGoogle Scholar
  7. 7).
    Osborn, M. and Weber, K. (1976). Tubulin-specific antibody and the expression of microtubules in 3T3 cells after attachment to a substratum. Expl. Cell Res., 103, 331.CrossRefGoogle Scholar
  8. 8).
    Frankel, F.R. (1976). Organization and energy-dependent growth of microtubules in cells. Proc. Natl. Acad. Sci. USA, 73, 2798.PubMedCrossRefGoogle Scholar
  9. 9).
    de Mey, J., Joniau, M., de Brabander, M., Moens, W. and Geuens, G. (1976). Immunoperoxidase visualisation of microtubules and microtubular proteins. Nature, Lond., 264, 273.CrossRefGoogle Scholar
  10. 10).
    de Mey, J., Joniau, M., de Brabander, M., Moens, W. and Geuens, G. (1978). Evidence for unaltered structure and in vivo assembly of microtubules in transformed cells. Proc. Natl. Acad. Sci. USA, 75, 1339.PubMedCrossRefGoogle Scholar
  11. 11).
    Weber, K., Rathke, P.C. and Osborn, M. (1978). Cytoplasmic microtubular images in glutaraldehyde-fixed tissue culture cells by electron microscopy and by immunofluorescence microscopy. Proc. Natl. Acad. Sci. USA, 75, 1820.PubMedCrossRefGoogle Scholar
  12. 12).
    Osborn, M. and Weber, K. (1976). Cytoplasmic microtubules in tissue culture cells appear to grow from an organising structure towards the plasma membrane. Proc. Natl. Acad. Sci. USA, 73, 867.PubMedCrossRefGoogle Scholar
  13. 13).
    Ausprunk, D.H. and Berman, H.J. (1978). Spreading of vascular endothelial cells in culture: Spatial reorganisation of cytoplasmic fibers and organelles. Tiss. and Cell, 10, 707.CrossRefGoogle Scholar
  14. 14).
    Olmsted, J.V. and Borisy, G.G. (1973). Microtubules. Ann. Rev. Biochem., 42, 507.PubMedCrossRefGoogle Scholar
  15. 15).
    Bettex-Galland, M. and Luscher, E.F. (1959). Extraction of an actomyosin-like protein from human thrombocytes. Nature, 184, 276.PubMedCrossRefGoogle Scholar
  16. 16).
    Buckley, I.K. and Porter, K.R. (1967). Cytoplasmic fibrils in living cultured cells: a light and electron microscope study. Protoplasma, 64, 349.PubMedCrossRefGoogle Scholar
  17. 17).
    Ishikawa, H., Bischoff, R. and Holtzer, H. (1969). Formation of arrowhead complexes with heavy meromyosin in a variety of cell types. J. Cell Biol., 43, 312.PubMedCrossRefGoogle Scholar
  18. 18).
    Huxley, H.E. (1963). Electron microscope studies on the structure of natural and synthetic protein filaments from striated muscle. J. Molec. Biol., 7, 281.CrossRefGoogle Scholar
  19. 19).
    Spooner, B.S., Yamada, K.M. and Wessells, N.K. (1971). Microfilaments and cell locomotion. J. Cell Biol., 49, 595.PubMedCrossRefGoogle Scholar
  20. 20).
    Abercrombie, M., Heaysman, J.E.M. and Pegrum, S.M. (1971). The locomotion of fibroblasts in culture. IV. Electron microscopy of the leading lamella. Expl. Cell Res., 67, 359.CrossRefGoogle Scholar
  21. 21).
    Lazarides, E. and Weber, K. (1974). Actin antibody: the specific visualisation of actin filaments in non-muscle cells. Proc. Natl. Acad. Sci. USA, 71, 2268.PubMedCrossRefGoogle Scholar
  22. 22).
    Goldman, R.D., Lazarides, E., Pollack, R. and Weber, K. (1975). The distribution of actin in non-muscle cells. Expl. Cell Res., 90, 333.CrossRefGoogle Scholar
  23. 23).
    Lazarides, E. (1976). Two general classes of cytoplasmic actin filaments in tissue culture cells: the role of tropomyosin. J. Supramolecular Struct., 5, 531.CrossRefGoogle Scholar
  24. 24).
    Small, J.V. and Celis, J.E. (1978). Filament arrangements in negatively stained cultured cells: the organisation of actin. Cytobiologie, 16, 308.PubMedGoogle Scholar
  25. 25).
    Heath, J.P. and Dunn, G.A. (1978). Cell to substrate contacts of chick fibroblasts and their relation to the microfilament system. A correlated interference-reflexion and high-voltage electronmicroscope study. J. Cell Sci., 29, 197.PubMedGoogle Scholar
  26. 26).
    Izzard, C.S. and Lochner, L.R. (1976). Cell-to-substrate contacts in living fibroblasts: an interference reflexion study with an evaluation of the technique. J. Cell Sci., 21, 129.PubMedGoogle Scholar
  27. 27).
    Badley, R.A., Lloyd, C.W., Woods, A., Carruthers, L., Allcock, C. and Rees, D.A. (1978). Mechanisms of cellular adhesion. Expl. Cell Res., 117, 231.CrossRefGoogle Scholar
  28. 28).
    Hynes, R.O. and Destree, A.T. (1978). Relationships between fibronection (LETS protein) and actin. Cell, 15, 875.PubMedCrossRefGoogle Scholar
  29. 29).
    Harris, A.K. (1973). Cell surface movements related to cell locomotion. In: “Locomotion of Tissue Cells” Ciba Found. Symp., 1972, Vol. 14, p. 3.Google Scholar
  30. 30).
    Abercrombie, M., Heaysman, J.E.M. and Pegrum, S.M. (1970). The locomotion of fibroblasts in culture. I. Movements of the leading edge. Expl. Cell Res., 59, 393.CrossRefGoogle Scholar
  31. 31).
    Fawcett, C.W. (1966). An atlas of fine structure. The cell: its organelles and inclusions, Saunders Philadelphia.Google Scholar
  32. 32).
    Small, J.V. and Sobieszek, A. (1977). Studies on the function and composition of the 10 nm (100 Å) filaments of vertebrate smooth muscle. J. Cell Science, 23, 243.PubMedGoogle Scholar
  33. 33).
    Ishikawa, H. (1974). Arrowhead complexes in a variety of cell types. In: “Exploratory Concepts in Muscular Dystrophy”. Vol. 2, (ed., A.T. Milhoret), p. 37, Amsterdam Excerpta Medica.Google Scholar
  34. 34).
    Goldman, R.D. and Knipe, D.M. (1973). Functions of cytoplasmic fibers in non-muscle cell motility. Cold Spring Harb. Symp., Quant. Biol., 37, 523.CrossRefGoogle Scholar
  35. 35).
    Croop, J. and Holtzer, H. (1975). Response of myogenic and fibrogenic cells to cytochalasin B and to colcemid. I. Light microscope observations. J. Cell Biol., 65, 271.PubMedCrossRefGoogle Scholar
  36. 36).
    Kurki, P., Virtanen, I., Stenman, S. and Linder, E. (1977). Human smooth muscle autoantibodies reacting with intermediate (100 Å) filaments. Nature, Lond., 268, 240.CrossRefGoogle Scholar
  37. 37).
    Osborn, M., Franke, W.W. and Weber, K. (1977). Visualisation of a system of filaments 7–10 nm thick in cultured cells of an epithelioid line (PtK2) by immunofluorescence microscopy. Proc. Natl. Acad. Sci. USA, 74, 2490.PubMedCrossRefGoogle Scholar
  38. 38).
    Gordon, W.E., Bushnell, A. and Burridge, K. (1978). Characterisation of the intermediate (10 nm) filaments of cultured cells using an autoimmune rabbit antiserum. Cell, 13, 249.PubMedCrossRefGoogle Scholar
  39. 39).
    Hynes, R.O. and Destree, A.T. (1978). 10 nm filaments in normal and transformed cells. Cell, 13, 151.PubMedCrossRefGoogle Scholar
  40. 40).
    Franke, W.W., Schmid, E., Weber, K. and Osborn, M. (1979). Intermediate-sized filaments of human endothelial cells. J. Cell Biol., 81, 570.PubMedCrossRefGoogle Scholar
  41. 41).
    Franke, W.W., Schmid, E., Weber, K. and Osborn, M. (1979). HeLa cells contain intermediate-sized filaments of the prekaratin type. Expl. Cell Res., 118, 95.CrossRefGoogle Scholar
  42. 42).
    Campbell, G.R., Chamley-Campbell, J., Gröschel Stewart, U., Small, J.V. and Andersen, P. (1979). Antibody staining of 10 nm (100 Å) filaments in cultured smooth, cardiac and skeletal muscle cells. J. Cell Sci., 37, 303.PubMedGoogle Scholar
  43. 43).
    Franke, W.E., Schmid, E., Breitkreutz, D., Lüder, M., Boukamp, P., Fusenig, N.E., Osborn, M. and Weber, K. (1979). Simultaneous expression of two different types of intermediate sized filements in mouse keratinocytes proliferating in vitro. Differentiation, 14, 35.PubMedCrossRefGoogle Scholar
  44. 44).
    Schlaepfer, W.W. and Freeman, L.A. (1978). Neurofilament proteins of rat peripheral nerve and spinal cord. J. Cell Biol., 78, 653.PubMedCrossRefGoogle Scholar
  45. 45).
    Franke, W.W., Schmid, E., Osborn, M. and Weber, K. (1978). The intermediate-sized filaments in rat kangaroo PtK2 cells. II. Structure and composition of isolated filaments. Cytobiologie, 17, 392.PubMedGoogle Scholar
  46. 46).
    Starger, J.M., Brown, W.E., Goldman, A.E. and Goldman, R.D. (1978). Biochemical and immunological analysis of rapidly purified 10 nm filaments from baby hamster kidney (BHK-21) cells. J. Cell Biol., 78, 93.PubMedCrossRefGoogle Scholar
  47. 47).
    Lehto, V.-P., Vitanen, I. and Kurki, P. (1978). Intermediate filaments anchor the nuclei in nuclear monolayers of cultured human fibroblasts. Nature, Lond., 272, 175.CrossRefGoogle Scholar
  48. 48).
    Franke, W.W., Schmid, E., Osborn, M. and Weber, K. (1978). Different intermediate-sized filaments distinguished by immunofluorescence microscopy. Proc. Natl. Acad. Sci. USA, 75, 5034.PubMedCrossRefGoogle Scholar
  49. 49).
    Bennett, G.S., Fellini, S.A., Croop, J.M., Otto, J.J., Bryan, J. and Holtzer, H. (1978). Differences among 100 Å filament subunits from different cell types. Proc. Natl. Acad. Sci. USA, 75, 4364.PubMedCrossRefGoogle Scholar
  50. 50).
    Ericksson, A. and Thornell, L.E. (1979). Intermediate (skeletin) filaments in heart purkinje fibres. J. Cell Biol., 80, 231.CrossRefGoogle Scholar
  51. 51).
    Small, J.V. and Celis, J.E. (1978). Direct visualisation of the 10 nm (100 Å)-filement network in whole and enucleated cultured cells. J. Cell Sci., 31, 393.PubMedGoogle Scholar
  52. 52).
    Trotter, J.A., Foerder, B.A. and Keller, J.M. (1978). Intracellular fibres in cultured cells: analysis by scanning and transmission electron microscopy and by SDS-polyacrylamide gel electrophoresis. J. Cell Sci., 31, 369.PubMedGoogle Scholar
  53. 53).
    Bravo, R. and Celis, J.E., in preparation.Google Scholar
  54. 54).
    Blose, S.H., private communication.Google Scholar
  55. 55).
    Sloboda, R.D., Dettler, W.L. and Rosenbaum, J.L. (1976). Microtubule-associated proteins and the stimulation of tubulin assembly in vitro. Biochemistry, 15, 4497.PubMedCrossRefGoogle Scholar
  56. 56).
    Murphy, D.B. and Borisy, G.G. (1975). Association of high molecular weight proteins with microtubules and their role in microtubule assembly in vitro. Proc. Natl. Acad. Sci. USA, 72, 2696.PubMedCrossRefGoogle Scholar
  57. 57).
    Weingarten, M.D., Lockwood, A.H., Hwo, S.-Y. and Kirschner, M.W. (1975). A protein factor essential for microtubule assembly. Proc. Natl. Acad. Sci. USA, 72, 1858.PubMedCrossRefGoogle Scholar
  58. 58).
    Herzog, W. and Weber, K. (1978). Fractionation of brain microtubule-associated proteins. Isolation of two different proteins which stimulate tubulin polymerisation in vitro. Eur. J. Biochem., 92, 1.PubMedCrossRefGoogle Scholar
  59. 59).
    Murphy, D.B., Johnson, K.A. and Borisy, G.G. (1977). Role of tubulin-associated proteins in microtubule nucleation and elongation. J. Mol. Biol., 117, 33.PubMedCrossRefGoogle Scholar
  60. 60).
    Nagle, B.W., Doenges, K.H. and Bryan, J. (1977). Assembly of tubulin from cultured cells and comparison with the neurotubulin model. Cell, 12, 573.PubMedCrossRefGoogle Scholar
  61. 61).
    Small, J.V. and Sobieszek, A. (1979). The contractile apparatus of smooth muscle. Int. Rev. Cytol., in press.Google Scholar
  62. 62).
    Weber, K. and Groeschel-Stewart, U. (1974). Antibody to myosin: the specific visualisation of myosin-containing filaments in non-muscle cells. Proc. Natl. Acad. Sci. USA, 71, 4561.PubMedCrossRefGoogle Scholar
  63. 63).
    Lazarides, E. (1975). Tropomyosin antibody: the specific localisation of tropomyosin in non-muscle cells. J. Cell Biol., 65, 549.PubMedCrossRefGoogle Scholar
  64. 64).
    Lazarides, E. and Burridge, K. (1975). Alpha actinin: immunofluorescent localisation of a muscle structural protein in non-muscle cells. Cell, 6, 289.PubMedCrossRefGoogle Scholar
  65. 65).
    Gordon, W.E. (1978). Immunofluorescent and ultrastructural studies of “sarcomeric” units in stress fibres of cultured non-muscles cells. Expl. Cell Res., 117, 253.CrossRefGoogle Scholar
  66. 66).
    Geiger, G. and Singer, S.J., private communication.Google Scholar
  67. 67).
    Fujiwara, K., Porter, M.E. and Pollard, T.D. (1978). Alpha-actinin localization in the cleavage furrow during cytokinesis. J. Cell Biol., 79, 268.PubMedCrossRefGoogle Scholar
  68. 69).
    Bretscher, A. and Weber, K. (1978). Localization of actin and microfilament-assocated proteins in the microvilli and terminal web of the intestinal brush border by immunofluorescence microscopy. J. Cell Biol., 79, 839.PubMedCrossRefGoogle Scholar
  69. 70).
    Craig, S.W. and Pardo, J.E. (1970). Alpha-actinin localisation in the junctional complex of intestinal epithelial cells. J. Cell Biol., 80, 203.CrossRefGoogle Scholar
  70. 71).
    Jockusch, B.M., Burger, M.M., da Prada, M., Richards, J.G., Chaponnier, C. and Gabbiani, G. (1977). Alpha-actinin attached to membranes of secretory vesicles. Nature, Lond., 270, 628.CrossRefGoogle Scholar
  71. 72).
    Heggeness, M.H., Wang, K. and Singer, S.J. (1977). Intracellular distributions of mechanochemical proteins in cultured fibroblasts. Proc. Natl. Acad. Sci. USA, 74, 3883.PubMedCrossRefGoogle Scholar
  72. 73).
    Zackroff, R.V. and Goldman, R.D., private communication.Google Scholar
  73. 74).
    Porter, K.R. (1976). Motility in cells. In: “Cell Motility” (eds., R. Goldman, T. Pollard and J. Rosenbaum). p. 1, Cold Spring Harb. Lab. 1976.Google Scholar
  74. 75).
    Wolosewick, J.J. and Porter, K.R. (1976). Stereo high-voltage electron microscopy of whole cells of human diploid line. Am. J. Anat., 147, 303.PubMedCrossRefGoogle Scholar
  75. 76).
    Wolosewick, J.J. and Porter, K.R. (1979). Microtrabecular lattice of the cytoplasmic ground substance. Artefact or reality. J. Cell. Biol., 82, 114.PubMedCrossRefGoogle Scholar
  76. 77).
    Small, J.V., Isenberg, G. and Celis, J.E. (1978). Polarity of actin at the leading edge of cultured cells. Nature, Lond., 272, 638.CrossRefGoogle Scholar
  77. 78).
    Small, J.V. and Isenberg, G., in preparation.Google Scholar
  78. 79).
    Ingram, V.M. (1969). A side view of moving fibroblasts. Nature, Lond., 222, 641.CrossRefGoogle Scholar
  79. 80).
    Isenberg, G., Small, J.V. and Kreutzberg, G. (1978). Correlation between actin polymerization and surface receptor segragation in neuroblastoma cells treated with concanavalin A. J. Neurocytol., 7, 649.PubMedCrossRefGoogle Scholar
  80. 81).
    Bragina, E.E., Vasiliev, J.M. and Gelfand, I.M. (1976). Formation of bundles of microfilaments during spreading of fibroblasts on the substrate. Expl. Cell Res., 97, 241.CrossRefGoogle Scholar
  81. 82).
    Edds, K.T. (1977). Dynamic aspects of filopodial formation by reorganization of microfilaments. J. Cell Biol., 73, 479.PubMedCrossRefGoogle Scholar
  82. 83).
    Otto, J.J., Kane, R.E. and Bryan, J. (1979). Formation of filopodia in coelomocytes: localisation of fascin, a 58,000 dalton actin cross-linking protein. Cell, 17, 285.PubMedCrossRefGoogle Scholar
  83. 84).
    Wessells, N.K., Spooner, B.S. and Luduena, M.A. (1973). Surface movements and microfilaments. In: “Locomotion of Tissue Culture Cells”, Ciba Fdn Symp., 14, p. 53.Google Scholar
  84. 85).
    Tilney, L.G. (1975). The role of actin in non-muscle cell motility. In: “Molecules and Cell Movement (eds., S. Inoue and R.E. Stephens), p. 339, Raven Press, New York.Google Scholar
  85. 86).
    Abercrombie, M. (1970). Contact inhibition in tissue culture. In vitro, 6, 128.PubMedCrossRefGoogle Scholar
  86. 87).
    Boyde, A., Grainger, F. and James, D.W. (1969). Scanning electron microscopic observations of chick embryo fibroblasts in vitro, with particular reference to the movement of cells under others. Z. Zellforsch., 94, 46.PubMedCrossRefGoogle Scholar
  87. 88).
    Bell, P.B. (1977). Locomotory behaviour, contact inhibition, and pattern formation of 3T3 and polyoma virus-transformed 3T3 cells in culture. Expl. Cell Res., 110, 963.Google Scholar
  88. 89).
    Ebendal, T. and Heath, J.P. (1977). Self-contact inhibition of movement in cultured chick heart fibroblasts. Expl. Cell Res., 110, 469.CrossRefGoogle Scholar
  89. 90).
    Pollack, R., Osborn, M. and Weber, K. (1975). Patterns of organisation of actin and myosin in normal and transformed cultured cells. Proc. Natl. Acad. Sci. USA, 72, 994.PubMedCrossRefGoogle Scholar
  90. 91).
    Brinkley, B., Fuller, G. and Highfield, D. (1975). Cytoplasmic microtubules in normal and transformed cells in culture: analysis by tubulin antibody immunofluorescence. Proc. Natl. Acad. Sci. USA, 72, 4981.PubMedCrossRefGoogle Scholar
  91. 92).
    Osborn, M. and Weber, K. (1977). The display of microtubules in transformed cells. Cell, 12, 561.PubMedCrossRefGoogle Scholar
  92. 93).
    Goldman, R.D., Yerna, M. and Schloss, J.A. (1976). Localisation and organisation of microfilaments and related proteins in normal and virus-transformed cells. J. Supramolecular Struct., 5, 155.CrossRefGoogle Scholar
  93. 94).
    Tucker, R.W., Sanford, K.K. and Frankel, F.R. (1978). Tubulin and actin in paired non-neoplastic and spontaneously transformed neoplastic cell lines in vitro: fluorescent antibody studies. Cell, 13, 629.PubMedCrossRefGoogle Scholar
  94. 95).
    Celis, J.E., Small, J.V., Andersen, P. and Celis, A. (1978). Microfilament bundles in cultured cells. Correlation with anchorage independence and tumorigenicity in nude mice. Expl. Cell Res., 114, 335.CrossRefGoogle Scholar
  95. 96).
    Willingham, M.C., Yamada, K.M., Yamada, S.S., Pouyssegur, J. and Pastan, I. (1977). Microfilament bundles and cell shape are related to adhesiveness to substratum and are dissociable from growth control in cultured fibroblasts. Cell, 10, 375.PubMedCrossRefGoogle Scholar
  96. 97).
    Ali, I.A., Mautner, V., Lanza, R. and Hynes, R.O. (1977). Restoration of normal morphology, adhesion and cytoskeleton in transformed cells by addition of a transformation-sensitive surface protein. Cell, 11, 115.PubMedCrossRefGoogle Scholar
  97. 98).
    Celis, J.E., Small, J.V., Kaltoft, K. and Celis, A. (1979). Microfilament bundles in transformed mouse CL1DX transformed CHO cell hybrids. Expl. Cell Res., 120, 79.CrossRefGoogle Scholar
  98. 99).
    Wiche, G., Lundblad, V.T. and Cole, R.D. (1977). Competence of soluble cell extracts as microtubule assembly systems. J. Biol. Chem., 252, 794.PubMedGoogle Scholar
  99. 100).
    Hiller, G. and Weber, K. (1978). Radioimmunoassay for tubulin: a quantitative comparison of the tubulin content of different established tissue culture cells and tissues. Cell, 14, 795.PubMedCrossRefGoogle Scholar
  100. 101).
    Bravo, R. and Celis, J.E. Gene expression in normal and virally-transformed 3T3B and BHK21 cells, submitted for publication.Google Scholar
  101. 102).
    Fine, R.E. and Taylor, L. (1976). Decreased actin and tubulin synthesis in 3T3 cells after transformation by SV40 virus. Expl. Cell Res., 102, 162.CrossRefGoogle Scholar
  102. 103).
    McClain, D.A., Maness, P.F. and Edelman, G.M. (1978). Assay for early cytoplasmic effects of the srC gene product of Rous sarcoma virus. Proc. Natl. Acad. Sci. USA, 75, 2750.PubMedCrossRefGoogle Scholar
  103. 104).
    Graessmann, A., Graessmann, M. and Mueller, C. This volume.Google Scholar
  104. 105).
    Feramisco, J.R. (1979). Microinjection of fluorescently labeled α-actinin into living fibroblasts. Proc. Natl. Acad. Sci. USA, 76, 3967.PubMedCrossRefGoogle Scholar
  105. 106).
    Taylor, D.L. and Wang, Y.L. (1978). Molecular cytochemistry: incorporation of fluorescently labeled actin into cells. Proc. Natl. Acad. Sci. USA, 75, 857.PubMedCrossRefGoogle Scholar
  106. 107).
    Isenberg, G., Schubert, P. and Kreutzberg, G.W. (1979). Actin, a neuroplasmic constituent requisite for axonal transport. Proc. Natl. Acad. Sci. USA, in press.Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • J. V. Small
    • 1
  • J. E. Celis
    • 2
  • G. Isenberg
    • 3
  1. 1.Institute of Molecular Biology of the AustrianAcademy of SciencesSalzburgAustria
  2. 2.Dept. of ChemistryAarhus UniversityAarhus CDenmark
  3. 3.Max-Planck-Institute for PsychiatrieMunichW. Germany

Personalised recommendations