Surrogate Genetics in the Frog Oocyte

  • A. Kressmann
  • M. L. Birnstiel
Part of the NATO Advanced Study Institutes Series book series (NSSA, volume 31)


About 20 years ago Jacob and Monod introduced the concept of the operon. Their idea that a single regulatory sequence, the operon, controlled and co-ordinated the expression of several structural genes opened up the way for our present day understanding of gene expression in prokaryotes. Rightly or wrongly, this concept dominates present day research on the elucidation of gene structure in eukaryotes. Consequently, now that many eukaryotic genes have been cloned and partially or completely sequenced the DNA base sequences have been rigorously searched for structures equivalent to the prokaryotic operator, terminator or replicator signals.


Xenopus Laevis tRNA Gene Xenopus Oocyte Histone Gene Animal Pole 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    Gannon, F., O’Hare, K., Perrin, F., Le Pennec, J.P., Benoist, C., Cochet, M., Breathnach, R., Royal, A., Garapin, A., Cami, B. and Chambon, P. (1979). Organization and sequences at the 5′ end of a cloned complete ovalbumin gene. Nature, 278, 428.PubMedCrossRefGoogle Scholar
  2. 2).
    Busslinger, M., Portmann, R. and Birnstiel, M.L. (1979). A regulatory sequence near the 3′ end of sea urchin histone genes. Nucleic Acids Res., 9, 2997.CrossRefGoogle Scholar
  3. 3).
    Birnstiel, M.L., and Chipchase, M. (1977). Current work on the histone operon. Trends in Biochemical Sciences, 2, 149.CrossRefGoogle Scholar
  4. 4).
    Wigler, M., Pellicer, A., Silverstein, S. and Axel, R. (1978). Biochemical transfer of single-copy eucaryotic genes using total cellular DNA as Donor. Cell, 14, 725.PubMedCrossRefGoogle Scholar
  5. 5).
    Schaffner, W., Topp, W. and Botchan, M. (1979). Movement of foreign DNA into and out of somatic cell chromosomes by linkage to SV40. In: Specific eukaryotic genes, Alfred Benzon Symposium 13, Munksgaard.Google Scholar
  6. 6).
    Dumont, J.N. (1972). Oogenesis in Xenopus laevis. J. Morphol., 136, 153.PubMedCrossRefGoogle Scholar
  7. 7).
    Cabada, M.O., Darnbrough, C., Ford, P.J. and Turner, P.C. (1977). Differential accumulation of two size classes of poly(A) associated with messenger RNA during oogenesis in Xenopus laevis. Dev. Biol., 57, 427.PubMedCrossRefGoogle Scholar
  8. 8).
    Anderson, D.M. and Smith, L.D. (1978). Patterns of synthesis and accumulation of heterogeneous RNA in lampbrush stage oocytes of Xenopus laevis. Dev. Biol., 67, 274.PubMedCrossRefGoogle Scholar
  9. 9).
    Roeder, R.G. (1974). Multiple forms of deoxyribonucleic acid-dependent ribonucleic acid polymerase in Xenopus laevis. J. Biol. Chem., 249, 249.PubMedGoogle Scholar
  10. 10).
    Adamson, E.D. and Woodland, H.R. (1977). Changes in the rate of.Google Scholar
  11. 11).
    Lane, C.D. and Knowland, J. (1975). The injection of RNA into living cells: The use of frog oocytes for the assay of mRNA and the study of the control of gene expression. In: The biochemistry of animal development. Vol. III, 145.Google Scholar
  12. 12).
    Colman, A. (1975). Transcription of DNAs of known sequence after injection into the eggs and oocytes of Xenopus laevis. Eur. J. Biochem., 57, 85.PubMedCrossRefGoogle Scholar
  13. 13).
    Mertz, J.E. and Gurdon, J.B. (1977). Purified DNAs are transcribed after microinjection into Xenopus oocytes. Proc. Natl. Acad. Sci. USA, 74, 1502.PubMedCrossRefGoogle Scholar
  14. 14).
    Gurdon, J.B. (1976). Injected nuclei in frog oocytes: Fate, enlargement, and chromatin dispersal. J. Embryol. Exp. Morph., 36, 523.PubMedGoogle Scholar
  15. 15).
    Kressmann, A., Clarkson, S.G., Telford, J.L. and Birnstiel, M.L. (1977). Transcription of Xenopus tDNAmet 1 and sea urchin histone DNA injected into the Xenopus oocyte nucleus. Cold Spring Harbor Symp. Quant. Biol., 42, 1077.CrossRefGoogle Scholar
  16. 16).
    Gurdon, J.B. (1974). The control of gene expression in animal development. Clarendon Press.Google Scholar
  17. 17).
    Billet, F.S. and Wild, A.E. (1975). Practical studies of animal development. Chapman.Google Scholar
  18. 18).
    Wyllie, A.H., Gurdon, J.B. and Price, J. (1977). Nuclear localization of an oocyte component required for the stability of injected DNA. Nature, 268, 150.PubMedCrossRefGoogle Scholar
  19. 19).
    Wyllie, A.H., Laskey, R.A., Finch, J. and Gurdon, J.B. (1978). Selective DNA conservation and chromatin assembly after injection of SV40 DNA into Xenopus oocytes. Dev. Biol., 64, 178.PubMedCrossRefGoogle Scholar
  20. 20).
    Gurdon, J.B. and Brown, D.D. (1978). The transcription of 5S DNA injected into Xenopus oocytes. Dev. Biol., 67, 346.PubMedCrossRefGoogle Scholar
  21. 21).
    Trendelenburg, M.F. and Gurdon, J.B. (1978). Transcription of cloned Xenopus ribosomal genes visualised after injection into oocyte nuclei. Nature, 276, 292.PubMedCrossRefGoogle Scholar
  22. 22).
    Gurdon, J.B. (1967). On the origin and persistance of a cytoplasmic state inducing nuclear DNA synthesis in frog eggs. Proc. Natl. Acad. Sci. USA, 58, 545.PubMedCrossRefGoogle Scholar
  23. 23).
    Gurdon, J.B., Birnstiel, M.L. and Speight, V.A. (1969). The replication of purified DNA introduced into living egg cytoplasm. Biochim. Biophys. Acta, 174, 614.PubMedGoogle Scholar
  24. 24).
    Laskey, R.A. and Gurdon, J.B. (1973). Induction of Polyoma DNA synthesis by injection into frog-egg cytoplasm. Eur. J. Biochem., 57, 467.CrossRefGoogle Scholar
  25. 25).
    Benbow, R.M., Krauss, M.R. and Reeder, R.H. (1978). DNA synthesis in a multi-enzyme system from Xenopus laevis eggs. Cell, 13, 307.PubMedCrossRefGoogle Scholar
  26. 26).
    Brown, D.D. and Gurdon, J.B. (1977). High-fidelity transcription of 5S DNA injected into Xenopus oocytes. Proc. Natl. Acad. Sci. USA, 74, 2064.PubMedCrossRefGoogle Scholar
  27. 27).
    Brown, D.D. and Gurdon, J.B. (1978). Cloned single repeating units of 5S DNA direct accurate transcription of 5S RNA when injected into Xenopus oocytes. Proc. Natl. Acad. Sci. USA, 75, 2849.PubMedCrossRefGoogle Scholar
  28. 28).
    Korn, L.J. and Brown, D.D. (1978). Nucleotide sequence of Xenopus boreal is oocyte 5S DNA: Comparison of sequences that flank several related eukaryotic genes. Cell, 15, 1145.PubMedCrossRefGoogle Scholar
  29. 29).
    Fedoroff, N.V. (1979). Deletion mutants of Xenopus leavis 5S ribosomal DNA. Cell, 16, 551.PubMedCrossRefGoogle Scholar
  30. 30).
    Kressmann, A., Clarkson, S.G., Pirotta, V. and Birnstiel, M.L. (1978). Transcription of cloned tRNA gene fragments and sub-fragments injected into the oocyte nucleus of Xenopus laevis. Proc. Natl. Acad. Sci. USA, 75, 1176.PubMedCrossRefGoogle Scholar
  31. 31).
    Telford, J.L., Kressmann, A., Koski, R.A., Grosschedl, R., Mueller, F., Clarkson, S.G. and Birnstiel, M.L. (1979). Delimitation of a promoter for RNA polymerase III by means of a functional test. Proc. Natl. Acad. Sci. USA, 76, 2590.PubMedCrossRefGoogle Scholar
  32. 32).
    Kressmann, A., Hofstetter, H., di Capua, E., Grosschedl, R. and Birnstiel, M. (1979). A tRNA gene of Xenopus laevis contains at least two sites promoting transcription. Nucl. Acids Res., 7, December issue, in press.Google Scholar
  33. 33).
    Cortese, R., Melton, D., Tranquilla, T. and Smith, J.D. (1978). Cloning of nematode tRNA genes and their expression in the frog oocyte. Nucl. Acids Res., 5, 4593.PubMedGoogle Scholar
  34. 34).
    de Robertis, E.M. and Olson, M.V. (1979). Transcription and processing of cloned yeast tyrosine tRNA genes microinjected into frog oocytes. Nature, 278, 137.PubMedCrossRefGoogle Scholar
  35. 35).
    Probst, E., Kressmann, A. and Birnstiel, M.L. (1979). Expression of sea urchin genes in the oocyte of Xenopus laevis. J. Mol. Biol., 135, 709.PubMedCrossRefGoogle Scholar
  36. 36).
    Laskey, R.A., Honda, B.M., Mills, A.D., Morris, N.R., Wyllie, A.H., Mertz, J.E., de Robertis, E.M. and Gurdon, J.B. (1977). Cold Spring Harbor Symp. Quant. Biol., 42, 171.CrossRefGoogle Scholar
  37. 37).
    Birnstiel, M.L., Kressmann, A., Schaffner, W., Portmann, R. and Busslinger, M. (1978). Aspects of the regulation of histone genes. Phil. Trans. R. Soc. Lond. B., 283, 319.CrossRefGoogle Scholar
  38. 38).
    Birnstiel, M.L., Portmann, R., Busslinger, M., Schaffner, W., Probst, E. and Kressmann, A. (1979). Functional organization of the histone genes in the sea urchin Psammechinus: A progress report. In: Specific eukaryotic genes, Alfred Benzon Symposium, Munksgaard.Google Scholar
  39. 39).
    Trendelenburg, M.F., Jentgraf, H., Franke, W.W. and Gurdon, J.B. (1978). Transcription patterns of amplified Dytiscus genes coding for ribosomal RNA after injection into Xenopus oocyte nuclei. Proc. Natl. Acad. Sci. USA, 75, 3791.PubMedCrossRefGoogle Scholar
  40. 40).
    de Robertis, E.D. and Mertz, J.E. (1977). Coupled transcription-translation of DNA injected into Xenopus oocytes. Cell, 12, 175.PubMedCrossRefGoogle Scholar
  41. 41).
    Fareed, G.C. and Davoli, D. (1977). Molecular biology of papova-viruses. Ann. Rev. Biochem., 46, 471.PubMedCrossRefGoogle Scholar
  42. 42).
    Aloni, Y., Dhar, R., Laub, O., Horowitz, M. and Khoury, G. (1977). Novel mechanism for RNA maturation. The leader sequences of simian virus 40 mRNA are not transcribed adjacent to the coding sequences. Proc. Natl. Acad. Sci. USA, 74, 3686.PubMedCrossRefGoogle Scholar
  43. 43).
    Rungger, D. and Tuerler, H. (1978). DNAs of simian virus 40 and polyoma direct the synthesis of viral tumor antigens and capsid proteins in Xenopus oocytes. Proc. Natl. Acad. Sci. USA, 75, 6073.PubMedCrossRefGoogle Scholar
  44. 44).
    Grosschedl, R. and Birnstiel, M.L. (1980). Deletions in the prelude of the sea urchin H2A histone gene elicit quantitative and qualitative changes in gene expression. Proc. Natl. Acad. Sci. USA, in press.Google Scholar
  45. 45).
    Huez, G., Ghysdael, J., Travnicek, M., Burny, A., Cleuter, Y., Kettmann, R., Marbaix, G. and Portetelle, D. (1978). Post-translational processing of oncornavirus proteins. In: Processing and turnover of proteins and organelles in the cell. 12th FEBS Meeting, 1978, 53, 3.Google Scholar
  46. 46).
    Marbaix, G., Huez, G., Soreq, H., Gallwitz, D., Weinberg, E., Devos, R., Hubert, E. and Cleuter, Y. (1978). Role of the polyadenylate segment in the stability of eukaryotic messenger RNAs. In: Gene functions. 12th FEBS Meeting, 1978, 51, 427.Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • A. Kressmann
    • 1
  • M. L. Birnstiel
    • 1
  1. 1.Institut für Molekularbiologie IIUniversität ZürichZürichSwitzerland

Personalised recommendations